A REPORT TO THE QUEENSLAND PARKS AND WILDLIFE SERVICE ON THE EFFECTS OFF COMMERCIAL HONEY BEES ON NATIVE FLORA AND FAUNA

July 27th, 2020

DR NADINE CHAPMAN AND PROFESSOR BEN OLDROYD

Behaviour, Ecology and Evolution Laboratory Macleay Building A12, Science Road Genetics, Evolution and Environment, School of Life and Environmental Sciences University of Sydney

Table of Contents

1. EXECUTIVE SUMMARY	3
1.1 What impacts do European honey bees have on the ecology of Australian	3
ecosystems?	
1.2 What specific impacts of the European honey bee can be attributed to managed,	3
commercial populations, as opposed to feral honey bee populations?	
1.3 Are the known ecological impacts of managed, commercial populations of	4
European honey bees sufficient to preclude ongoing commercial beekeeping industry	
use of national parks in Queensland?	
2. RECOMMENDATIONS	4
3. BACKGROUND	5
4. SCOPE	6
5. LITERATURE REVIEW	7
5.1 Relevant quality research is lacking	7
5.2 Competition with native fauna	8
5.2.1 Abundance correlations and resource overlap	8
5.2.2 Impacts of honey bees on the reproductive success of native bees and birds	10
5.2.3 Aggressive interactions	14
5.3 Pollination	15
5.3.1 Pollination of native plants	15
5.3.2 Hybridization of native plants	19
5.3.3 Outcrossing of native plants	19
5.3.4 Pollination of introduced weeds	20
5.4 Ecosystem integrity and function	21
5.4.1 Plant-pollinator networks	21
6. CONCLUSIONS	24
7. CITED LITERATURE	25

1. EXECUTIVE SUMMARY

1.1 What impacts do European honey bees have on the ecology of Australian ecosystems? Honey bees (*Apis mellifera*) have been present in Australia for almost 200 years. They are found in all habitats with the exception of extremely arid areas, and are now highly integrated into most of our natural systems.

Honey bees contribute to the pollination of invasive weeds and provide inadequate pollination to some native plants. For other native plant species, honey bees provide pollination services, either supplementing native pollinators or filling niches created by the loss of native pollinators. Native pollinators may be rare or absent due to habitat loss, or historical competition with honey bees and other introduced species.

Honey bees reduce standing crops of nectar and pollen, and therefore compete with vertebrate and invertebrate fauna for food. The evidence that this competition causes changes in the reproductive success of native fauna is equivocal.

The most important impact of honey bees on native ecosystems is competition between feral bees and native birds and animals for nest sites (Oldroyd et al. 1994). Feral bee populations are genetically distinct from commercial populations, demonstrating that feral populations are self-sustaining (Oldroyd et al. 1997, Chapman et al. 2008, Chapman et al. 2015, 2016). Therefore, exclusion of commercial beekeeping from national parks would not materially impact the density of feral bees.

1.2 What specific impacts of the European honey bee can be attributed to managed, commercial populations, as opposed to feral honey bee populations?

There is little evidence that commercial beekeeping negatively impacts native fauna beyond the impacts of feral bees. The impact of commercial honey bees relative to the background level of impact from feral honey bees arises from a sudden, temporary, increase in the number of honey bee foragers in an ecosystem. The density of feral bees in Australian ecosystems varies enormously: 0.5-150 colonies per square kilometre (Oldroyd et al. 1997, Hinson et al. 2015). The density of colonies at a commercial apiary site, assuming a foraging range of 2 km (Visscher and Seeley 1982) and 120 colonies per site, is 10 colonies per km². Thus, the expected increase in honey bee forager density when a commercial apiary is established varies between a negligible increase to a 20-fold increase. We suspect that areas targeted by beekeepers have higher densities of feral bees due to the floral resources available, so the expected increase in forager density as a consequence of commercial beekeeping is at the lower end of the range. Furthermore, there is an economic imperative for beekeepers to only use apiary sites when floral resources are abundant, lessening competition.

We conclude the impact of commercial bees over and above the impacts of feral bees is likely to be small in most cases. Despite the above arguments, we emphasise that this opinion is based on an absence of evidence rather than evidence of absence. Only two studies have considered the demographic effects of commercial beekeeping on Australian native fauna. One study found that native bee nests had higher survival at apiary sites relative to control sites (Schwarz et al. 1991). The other found that 23% fewer native bee nests were initiated at apiary sites (Paini and Roberts 2005), though we have some reservations about this study (Table 2).

In terms of the pollination of native and introduced flora, no Australian study has conclusively shown that honey bees (feral or commercial) have a significant negative effect on the reproductive success of native flora. Some studies have shown that honey bees are important pollinators for native plants.

1.3 Are the known ecological impacts of managed, commercial populations of European honey bees sufficient to preclude ongoing commercial beekeeping industry use of national parks in Queensland?

Among the studies that have examined the effects of commercial beekeeping on native fauna and flora, there are no compelling instances demonstrating negative effects. This is largely because the necessary ecological studies are inherently difficult to perform. An ideal study needs an area where 10 or so similar sites are chosen, each more than 4 km apart. A commercially-relevant number of honey bee colonies are then introduced at half the sites for the commercially-relevant time period for that location and then removed. Studies should be conducted over several years to assess seed set and the reproductive success of native fauna.

Existing studies fall far short of this ideal, and therefore lack sufficient statistical power to detect an ecological impact of commercial colonies should there be one, or cannot exclude confounding factors. The choice is to take the precautionary principle and argue that notwithstanding the limited evidence for impacts of commercial bees, at least some impact is likely and so beekeeping should be excluded from national parks. Alternatively, one might argue that, based on the available data, there are unlikely to be measurable impacts beyond those incurred by the presence of feral colonies, and that in the absence of compelling data to the contrary, the economic imposts on individual beekeepers and to agriculture more broadly would be unjustified.

The available data indicate that honey bees are important players in plant-pollinator interaction networks, and that their removal could have effects on natural ecosystems. A primary function of national parks is to conserve nature, and thus it would seem that the removal of foreign species would help achieve this aim. However, to do so is not without risk, as there is an absence of data on what happens when super-generalist pollinators are removed from ecosystems. These sites are accustomed to having commercial loads of honey bees when a major flowering event occurs. Banning commercial loads of bees from such sites may have no effect on pollination, a positive effect or lead to a pollination short-fall if native pollinators are not available.

2. RECOMMENDATIONS

As a result of our review we believe that on the balance of probabilities the presence of commercial colonies is unlikely to pose additional stresses on ecosystems beyond those caused by feral bees. Therefore, there is no compelling reason to exclude beekeeping on the basis of the available ecological data. Again, we emphasise an absence of evidence rather than evidence of absence.

- If a decision is made to exclude beekeeping as a result of the precautionary principle
 or concerns about commercial activity in parks, then we recommend that the
 opportunity be taken to assess the effects of commercial beekeeping on native flora
 and fauna in a rigorous way. We recommend that within any one park only half the
 sites should be removed from availability. Observations should be made over several
 years on apiary sites and ex-apiary sites in terms of the reproductive success of
 native species. If differences are found then exclusion can then be expanded to the
 remaining control sites. Conversely, if there are no discernible changes in ecosystem
 function, then bee sites could be restored.
- If beekeeping is continued it should be highly regulated. Beekeepers should be required to specify the target flora and specify the anticipated flowering period of the target species. Hives should be removed from the site outside this period;
- Beekeeper industry associations should be consulted to formulate workable regulations;
- Each park should be considered on a case by case basis to consider its conservation value and importance to beekeepers;
- Exclusion of beekeeping will cause severe economic hardship to a number of beekeepers and reduce the number or quality of colonies available for paid pollination services. Alternative sites should be identified where possible.

3. BACKGROUND

In this report we will use the term 'commercial' to denote any managed honey bee colony living in a human-made hive. Commercial colonies are distinct from feral colonies that live in natural cavities.

Commercial beekeeping plays a central role in Australian agriculture. Honey bees pollinate 53 Australian crops, and bee-pollinated crops contributed \$8.53-19.97 billion to the 2014-2015 economy (Karasiński 2018). In the same year, honey, beeswax, queen bees and propolis production contributed \$101 million to the national economy (van Dijk et al. 2016). There are over 13,000 registered beekeepers operating 448,000 colonies Australia-wide (van Dijk et al. 2016). Queensland is an important beekeeping state with 5,000 beekeepers and 100,000 registered hives (van Dijk et al. 2016). In Queensland, 320 beekeepers are commercial or semi-commercial, defined as 50 or more hives (Weatherhead 2018). Important horticultural industries in Queensland, particularly the melon and blueberry industries, are dependent on commercial honey bee pollination. Queensland is the least productive state on a per-hive basis (Bennik 2009, Salvin 2015, van Dijk et al. 2016).

Honey bees, *Apis mellifera*, are native to Europe, Africa and the Middle East but have been introduced throughout the world (Ruttner 1988). Honey bees were introduced to Australia in 1822 (Weatherhead 1986). Australia now has a large feral, bee population. Estimates vary from 0.1-1.5 (Hinson et al. 2015) to 50-150 colonies per km² (Oldroyd et al. 1997). The feral population is genetically distinct from the commercial population (Chapman et al. 2008, Chapman et al. 2015, 2016). This indicates that the feral population is self-sustaining and not dependent upon supplementation from the commercial populations (Oldroyd et al. 1997, Chapman et al. 2008, Chapman et al. 2016).

Beekeeping is considered an inconsistent use of national parks in Queensland. Despite this, commercial beekeeping currently occurs in 46 national parks, with approximately 1,100 established apiary sites. Beekeeping persists as a legacy activity, related to the transfer of State Forests to national park management under the federal Regional Forest Agreement (RFA) process. Established beekeeping sites in former State Forests were allowed to continue post-transfer to the national park system through special provisions of the *Nature Conservation Act* 1992 and other regulations (Environmental Protection Agency 2007). These provisions are due to expire on 31 December 2024, when all bee sites within Queensland national parks will lapse.

Since the RFA the beekeeping industry has consistently lobbied the Queensland government to maintain access to national parks beyond 2024. The industry argues in support of this concession as follows (Keith and Briggs 1987, Gibbs and Muirhead 1998, Australian Honey Bee Industry Council 2005, Moncur 2005, Somerville 2010, Salvin 2015):

- 80% of Australian honey production comes from native plants;
- National park apiary sites represent approximately one sixth of all apiary sites on public land (state forest and protected areas) in Queensland;
- National park apiary sites are proportionally more valuable than sites on other lands, as they contain unique floral assemblages and high-yield honey sources;
- Apiary sites in areas of high-quality native vegetation, including national parks, are required for the rehabilitation of hives stressed by the provision of pollination services, a function that is often not considered when assessing the importance bee sites to the industry;
- There is insufficient alternative land available to replace national park apiary sites. Studies conducted in the mid-200s identified approximately 18,000 ha of freehold land that could potentially support new commercial beekeeping sites. This is sufficient land to replace only 10% of the existing national park sites, and may not be available;
- Research does not sufficiently demonstrate that commercial honey bees have a significant ecological impact on plants and wildlife;
- Any impact is principally caused by feral honeybees. Commercial hives do not contribute to feral populations, as beekeepers managed their hives to minimise the risk of swarming. Even if swarming did occur, feral honey bees are already well-established through the national park system;
- Sites are used infrequently and for short periods due to the sporadic flower of native plants. Therefore, if there is any effect of commercial beekeeping use it is temporary.

4. SCOPE

The aim of this Review is to examine the literature that relates to the ecological impacts of *commercial* populations of the European honey bee on native pollinators, flora, fauna and on ecosystem integrity and function. Feral bees differ from commercial bees in that feral bees are present in an ecosystem year-round. In contrast, commercial bees are generally placed at a site for short periods, usually 4-6 weeks but up to 3 months (Seeman 1994, Somerville 2010, Salvin 2015). Obviously, commercial colonies do not compete with native

fauna for nest sites. Thus, the impacts of commercial bees are likely to be substantially different to the impacts of feral bees.

Unfortunately, the vast majority of ecological work on the impacts of honey bees on native flora and fauna considers the impacts of feral bees rather than commercial bees. This is, most studies have not increased the density of honey bees to 10 colonies per km², which is the density generated by commercial bee sites. Rather, most studies are based around field observations of interactions of what are presumably feral honey bees with native fauna and flora.

Much of the available literature on ecological impacts of honey bees concerns Africanized bees in the Americas. Africanized honey bees are hybrids of European and African subspecies of *A. mellifera* which became established in São Paulo, Brazil, in the 1960s (Winston 1992). European honey bees (*A. m. ligustica, A. m. mellifera* and other subspecies) perform poorly in tropical Latin America because they are unsuited to the climate. In an attempt to breed bees that were more appropriate for the Brazilian environment, *A. m. scutellata*, a subspecies that evolved in the tropical savanna region of southern Africa, was introduced to Brazil in 1956. *A. m. scutellata* hybridized with the extant European honey bees that had been naturalized since the 1700s. The resulting hybrids have spread through much of South and North America (Winston 1992). Africanized bees are much more aggressive and produce more swarms than do European subspecies, and are unsuitable for modern beekeeping (Winston 1992).

Concerns over a biological invasion of the United States by Africanized bees led to a massive research effort in the 1980s to better understand the ecology, genetics and behaviour of feral Africanized bees. We have surveyed this literature because it concerns the impacts of honey bees on tropical and subtropical ecosystems, whereas most other studies are from temperate regions. However, we caution that the literature on feral Africanized honey bees is only tangentially relevant to the ecological impacts of *commercial European* honey bee colonies in Queensland national parks.

Various pests and diseases have been, or have the potential to be, transferred from commercial bee populations to feral and native bee populations (Fürst et al. 2014, Evison 2015, Goulson and Hughes 2015). Such studies have not been included within this review as we consider that the presence of commercial colonies in national parks does not pose any additional disease risks to native fauna beyond that posed by the presence of feral honey bee colonies.

5. LITERATURE REVIEW

5.1 Relevant quality research is lacking

Numerous reviews (e.g. Paton 1993, Sugden et al. 1996, Butz Huryn 1997, Manning 1997, Schwarz and Hurst 1997, Goulson 2003, Paini 2004, Mallinger et al. 2017, Wojcik et al. 2018; Table 1) have strongly criticised the literature that explores the ecological effects of honey bees on native plants and wildlife (Table 2). In summary, few studies have measured the effects of commercial bees on native fauna and flora under real-life conditions. That is, there are very few studies where changes in native ecosystems have been documented as a

consequence of the presence of commercial honey bees at commercially-relevant densities. Fewer still have done so with control and experimental sites and appropriate replication.

5.2 Competition with native fauna

Honey bees have a number of traits that make them efficient foragers and this raises concerns that they outcompete native nectar and pollen foragers. Honey bees communicate the distance, direction and quality of food sources to their nestmates (Winston 1987). They therefore quickly recruit a large forager force to high-quality resources (Seeley et al. 1991). Honey bees thermoregulate their nest precisely, and can therefore commence foraging earlier in the day than most native insects (Jones et al. 2004). In addition, with their relatively large body size, honey bees are able to forage at lower temperatures than many native insects. Body size and nest thermoregulation means that honey bees have the potential remove substantial resources before native insects commence foraging (Paton 1993).

5.2.1 Abundance correlations and resource overlap

Competition between honey bees and native fauna native fauna is generally measured via niche overlap studies, or by changes in native fauna abundance in areas where honey bees have been introduced. Below we provide a critical evaluation of these methods before consideration of individual studies.

Many studies (Table 2) are 'correlational'. In these studies researchers set out a number of plots in the field, and then make counts of the number of honey bees, other insects and birds over a period of hours or days. Various inferences are then made from the abundance of honey bees and the native species of interest across sampling units (Sugden et al. 1996, Goulson 2003, Paini 2004, Stout and Morales 2009, Wojcik et al. 2018; Figure 1).

A negative correlation between the abundance of two species across sampling units can be interpreted as evidence for competitive displacement. Conversely, a negative correlation may be interpreted evidence that two species under consideration have different resource requirements and are not competitors (Ludwig and Reynolds 1988) (Figure 1).

Figure 1. Hypothetical correlations between honey bee and native bee or bird abundance. Positive and negative correlations can be interpreted to give the opposite conclusions

A positive correlation in abundance across sampling units may be interpreted as evidence for inter-specific competition, or conversely, of resource overlap (Ludwig and Reynolds 1988) without any competition (Figure 1).

A lack of association in the abundance of two species might be interpreted as evidence that two species do not affect each other. However, it is quite possible that there is competition, but the study lacks sufficient statistical power to detect it.

There are other ways in which a correlation can be misleading. For example, if removal of resources by honey bees means that native species must visit more flowers over a longer period to collect the same quantity of resource, the number of native foragers counted could increase (Paton 1993). Under this hypothetical example, what is actually competition leads to a positive correlation that could be interpreted as evidence of resource overlap without competition.

We conclude from the above that without manipulation of the study system, it is difficult to come to definitive conclusions about species interactions, because a correlation in species abundance can be interpreted in ways that can produce opposite conclusions. We therefore take the view that studies that merely demonstrate that honey bees and native species use the same floral resources are of limited value for demonstrating competition.

Unfortunately, despite the inherent problems of correlational studies, most ecological studies of native fauna-honey bee interactions are based around field observations of foraging native insects and (presumably feral) honey bees, without experimental manipulation (Table 2).

5.2.2.1 Beyond correlation: selected Australian studies

The following studies examined whether a nectar resource remained available to native fauna in the presence of honey bees. These studies show that temporal variation in

resource use or excess floral resources can reduce competition between honey bees and native species.

Honeyeaters foraged on Yellow mallee *Eucalyptus costata* (formerly *incrassata*) (Bond and Brown 1979) and one-sided bottlebrush *Calothamnus quadrifidus* (Collins et al. 1984) earlier in the morning than did honey bees. By the time honey bees commenced foraging the majority of the day's nectar had been consumed by the native species. Here the potential for honey bees to compete with honeyeaters was reduced because native species could utilize the available resource before honey bees had started foraging.

Honey bees commenced foraging on *Eucalyptus costata* before native bees, but nectar supplies remained at midday (Horskins and Turner 1999). This suggests that nectar was not a limiting resource in this ecosystem.

Two studies have demonstrated nectar depletion in the presence of honey bees:

Leatherwood (*Eucryphia lucida*) is a major resource for beekeepers in Tasmania. It produces nectar both during the day and the night. *E. lucida* flowers were depleted of nectar at apiary sites whereas 50% of nectar remained at control sites at 6pm (Mallick and Driessen 2009).

Desert Banksia, *Banksia ornata*, is a major resource for beekeepers in South Australia and Western Victoria. Nectar availability from the desert Banksia was significantly reduced at sites 1km from an apiary versus control sites with no apiary (Paton 1999). However, this depletion was only observed in only one year of a 3-year study, demonstrating that resource abundance varies in time and space.

5.2.1.2 Monolectic species

Native species that are monolectic (i.e. confine their foraging to a single plant species), cannot or do not switch to other resources in response to resource depletion. If resources are limiting then monolectic species are vulnerable to the presence of an exotic competitor. However, we found no such examples in the literature. Seeman (1994) is of the view that Australian fauna are unlikely to be monolectic due to the low frequency and high irregularity of flowering of many native plant species. Monolecty generally arises due to the absence of co-flowering congeners, and is rare (González-Varo et al. 2016).

5.2.1.3 Summary

There is potential for honey bees to remove significant floral resources. In some instances, native foragers are able to remove resources before honey bees commence foraging, or significant nectar and/or pollen is left even in the presence of honey bees. Whether or not resource removal by honey bees reduces the reproductive output of native wildlife can only be determined from direct assessment, not inference from correlations.

5.2.2 Impacts of honey bees on the reproductive success of native bees and birds Studies that demonstrate that the presence of honey bees impacts the reproductive success of potentially competing native species are the most valuable. Reductions in the number and quality of brood, or the amount of food stored by native bees as a consequence of the presence of honey bees, clearly demonstrate that competition is taking place.

5.2.2.1 Australian bee studies

Two Australian studies have examined the consequences of the presence of commercial honey bees on the reproductive success of native species. These studies used commercially-relevant numbers of honey bee colonies and featured good experimental design with adequately replicated experimental and control sites.

Paini and Roberts (2005) compared nest abundance and offspring mass of the native bee *Hylaeus alcyoneus* at 7 sites with 100 commercial honey bee colonies and 7 (control) sites without commercial honey bee colonies in a beekeeping reserve in Western Australia. The authors report 23% fewer *H. alcyoneus* nests at apiary sites compared to control sites, suggesting competition.

Unfortunately, some apiary sites were considered control sites until honey bee colonies were moved in, presumably by commercial necessity, confounding treatment with temporal factors. The differences between control and treatment sites were mainly driven by differences in the first year of this 2-year study. During the first year, only 30 *H. alcyoneus* nests were established across all 14 sites. Due to the variation in the dates at which apiary sites were occupied, it is unclear how many apiary sites were actually occupied by honey bee colonies during the first two observation periods, when the most *H. alcyoneus* nests were established in that year.

There was no effect when years were considered separately, including in the second year, when 87 nests were established. There was no difference in the number of eggs produced per nest or the weight of emerging offspring, but the statistical power to detect an effect of treatment was low. Despite being relatively well designed, the ability to detect an effect of honey bees on population demography was low, highlighting the difficulties of such endeavours.

In a study in South Australia, using 100 commercial colonies per site, there was no effect of honey bee presence on any measure of reproduction per nest for the native bee species *Exoneura bicolor* and *E. nigrihirta* (Schwarz et al. 1991). However, *Exoneura* nests had higher survival rates at sites with apiaries (n = 4) relative to control sites (n = 4). The authors attributed this surprising result to predator satiation, but gave no evidence for this.

Three more Australian studies considered effects of low honey bee colony densities on the reproductive success of native bees. Spessa (1999) found no difference between apiary sites (n = 4 sites; 6 colonies per site) and control sites (n = 4) in pupal weight, number of brood, survival of brood, colony size or abundance of *Amphylaeus morosus* nests over two years. In one of the years more nests were established at apiary sites.

Paini et al. (2005) assessed nest occupation and the number and weight of offspring of a native bee species (Megachile sp. 323) at a beekeeping reserve in Western Australia over 3 months, at a time when the area is not usually used by beekeepers. The aim was to establish if there is competition with feral honey bees, so honey bee colonies were placed at low density (2 colonies per treatment site). There were 6 control and 5 treatment sites. The number of nests, number of offspring, offspring mass, number of dead progeny, number of

nests in diapause and the sex ratio did not differ between treatment and control sites. Again, the statistical power available to detect biological differences of moderate effect size was low.

In south east NSW, more native reed bee (*Exoneura asimillima*) nests were established near one experimental site where honey bee colonies had been added, (10-29 hives, October-March in each of two years) than at 3 control sites, and there was no difference in native bee nest survival between the single apiary and control sites (Sugden and Pyke 1991). Native bee reproductive output per nest was higher at the apiary site than control sites in the first year, but this was likely due to a difference in sampling period. The lack of replication of the apiary site in this study renders the results questionable.

5.2.2.2 An Australian bird study

Paton (1993) suggested that male New Holland honeyeaters increased their territory size and changed their foraging behaviour on *Callistemon rugulosus* at a site in South Australia in response to increased honey bee colony abundance. We note that the male's territory size was estimated based on observations of 10 males for 5 hours. Five of the birds had territories near an apiary of 10 hives, five birds were observed distant to the apiary. Given the short-time frame of observations it is unclear if temporal effects can be differentiated from treatment effects.

5.2.2.3 International studies where honey bees are not native

Thomson (2004) found that the number of offspring produced by native *Bombus occidentalis* colonies in California did not vary with distance from a small number (2-3) of honey bee colonies. The authors suggest that reproductive success (number and proportion of gynes produced relative to the number of males and gyne size) of *B. occidentalis* increased with increasing distance from honey bee colonies, though the differences disappeared when *Bombus* nests damaged by wax moth were excluded from the analysis. The number of males produced is poorly estimated from the number of males leaving the nest during forager observations, with the authors noting that there is a low probability of observing male dispersal flights.

Roubik (1983) did not find any effect of a small number of Africanized honey bee colonies on brood production or food storage of two *Melipona* species in French Guiana. However, there were no control sites and poor replication.

Abe et al. (2008) examined whether resource competition with honey bees, habitat loss, agricultural chemicals or predation affected the distribution of 132 native bee species on 9 Japanese islands that differed in the presence or absence of these factors. While previous studies had shown that competition with honey bees was a factor in native bee decline (Kato 1992, Kato et al. 1999), after controlling for habitat loss, there was no relationship between honey bee abundance and native bee numbers (Abe et al. 2008). Note, however, that an Asian honey bee species, *Apis cerana*, is indigenous to these islands, and so other native bee species should be well-adapted to the presence of honey bees.

5.2.2.4 International studies where honey bees are native

Elbgami et al. (2014) measured colony weight and the number of males and new queens produced by 5 bumble bee (*Bombus terrestris*) colonies placed 5m compared to 1km from a 50-hive apiary in England. The experiment was replicated 2 years later. *B. terrestris* colonies close to the apiary gained less weight and produced smaller queens in both years. The number of males produced per *B. terrestris* colony did not differ between the control and experimental sites, but colonies close to the apiary produced fewer queens in one year. The author's assert that the surrounding forage at the near-apiary site and the distant-from-apiary site did not differ. However, without replication within years it is possible that differences in resource availability between the two sites contributed to the findings. *B. terrestris* colonies tend to specialise in producing either queens or males. The sex favoured is correlated with the length of the mother queen's diapause (hibernation period) (Duchateau et al. 2004). The extreme sex-ratio biases found in colonies near the apiary in one year (11.9:1) may be spurious due to the small number of colonies used. The length of diapause of the queens used for the study was not reported.

In Germany, Hudewenz and Klein (2013) investigated the number of nests of a groundnesting bee at different distances from the nearest honey bee colony and the number of nests of stem-nesting bee species at sites with or without honey bees. The number of ground nests did not differ with distance from the nearest honey bee colony. Sites with and honey bees had a smaller number of stem nesting species, but the authors argue that the species diversity was best explained by the distance to woody habitat. There was no difference in the total number of stem nests between sites with and without honey bee colonies.

Again in Germany, Hudewenz and Klein (2015) compared the number of brood cells constructed by red mason bees *Osmia bicornis* in flight cages with no honey bees, a small colony of 100 honey bees or a small colony of 300 honey bees. The honey bee colonies had a queen that continued to produced brood throughout the experiment. The honey bees were fed sugar patties throughout the experiment, which may have reduced competition, but likely spurred brood production and thus a greater demand for pollen with which to feed the brood. More *Osmia* brood cells were constructed in cages without honey bees. The experiment is highly artificial. We question whether a honey bee colony comprising 100 or even 300 workers is a viable unit, especially in a cage.

Kühn et al. (2006) found no change in the number of brood cells produced by leafcutter bees (*Megachile lapponica*) before, during and after the introduction of 15 honey bee colonies. The experiment was performed with two temporal replicates of 14 days in Germany. More long-term studies with greater replication are needed to verify these results.

Everts (1995) found that reproductive success of the leafcutter bee *Megachile rotundata* in Germany was higher at a site with no apiary compared to a site without an apiary. Due to the lack of site replication, other factors cannot be ruled out.

Steffan-Dewenter and Tscharntke (2000) found no correlation between the number of honey bee colonies (3-65) and the number of other native bee species occupying trap nests or the number of offspring produced at 15 sites in Germany. Likewise Pechhacker and

Zeillinger (1994) found no difference in occupation rates of trap nests by native bees with distance (100m to 1.5km) from an apiary in Austria.

Goulson and Sparrow (2009) compared the thorax width of up to 10 foraging workers of four native *Bombus* species in 10 areas with honey bees and 10 without honey bees in Scotland. The authors found that workers of all *Bombus* species were smaller in areas where honey bees were present. This result suggests that competition for resources with honey bees resulted in poorly-fed, smaller offspring. Worker size is positively correlated with the length of time since the emergence of the first worker (Shpigler et al. 2013). Therefore, if colonies differed in their development, and more than one worker was sampled from a colony, this may have skewed the results. More work is required to confirm these results.

5.2.5 Summary

Of the 16 studies that have examined the reproductive success and/abundance of native bees in the presence/absence of honey bees, 8 found negative effects of honey bees, 6 showed no effect and 2 showed what might be regarded as positive effects. On this basis one might conclude that there is evidence that the presence of honey bees has adverse effects on native bee populations. However, many studies suffer from a lack of controls and poor replication. Even the best-performed studies lacked sufficient statistical power to detect effects for some measures. For 13 of the 16 studies, the density of honey bee colonies was far less than commercially-relevant densities.

We conclude that there is little compelling evidence that honey bees have detrimental effect on the reproductive success of native fauna at commercially-relevant colony densities beyond the effects of low densities of honey bees.

5.2.3 Aggressive interactions

Some researchers have noted that native bee species are 'disturbed' on flowers by honey bees. These interactions are sometimes described as 'aggressive' but the actual behaviours are infrequently described and subject to interpretation. No attempt has been made to determine if there was a difference in visitation length between foragers who were and were not 'disturbed' by honey bees, or the proportion of foragers that were and were not 'disturbed' – were these rare events or only occasional?

5.2.3.1 Australian studies

Gross and Mackay (1998) noted that in 91% of 153 interactions between honey bees and native bees on *Melastoma affine* the native bee was 'disturbed'. Kinds of disturbance reported included 1) native bees hovering over but not landing on a flower that was occupied by a honey bee (71% of cases). Honey bees in this situation landed 91% of the time; 2) foraging native bees leaving the flower after a honey bee alighted (75% of cases) compared to honey bees leaving when a native bee alighted (6% of cases); and 3) both bees departing (17% of cases). They also report several aggressive interactions in which honey bees pulled native bees from stamens.

Stingless bees (*Tetragonula* spp) were not displaced by honey bees, but small Hylaeine bees flew off when touched by honey bees (Williams and Adam 1997). Taylor and Wheland

(1994) report that honeyeaters are deterred from feeding on Grevillea when honey bees are in high abundance, but they do not quantify or describe this behaviour.

5.2.3.2 International studies

Africanized bees vibrated their wings to repel aggressors (*Trigona*) on feeders in French Guiana, but rarely displayed aggression and only to *Melipona fulva*, polybiine wasps and other honey bees (Roubik 1980). In the main, native social bees outcompeted Africanized bees at feeders (Roubik 1980). Honey bees occasionally bit and stung other honey bees, but the nature of aggression toward other species is not described (Roubik 1980). Africanized honey bees also 'tackled' stingless bees in Mexico (Cairns et al. 2005). Africanized bees are known to be more aggressive than European subspecies (Winston 1992).

Dead *Bombus* (8 species) and other native bees were found in honey bee colonies in New York and Arizona, presumable killed while they tried to rob the honey bee colony (Morse and Gary 1961, Thoenes 1993). In New Zealand aggression by honey bees toward large Diptera was reported, but undescribed (Bennik 2009). Attacks by honey bees on other pollinators of *Salvia apiana* in California were also undescribed and unquantified (Ott et al. 2016).

While not aggressive, honey bees have been reported to steal pollen from the bodies of *Megachile montivaga, Melissodes desponsa, Bombus impatiens* (Jean 2005), *Bombus pennsylvanicus* (Laroca and Winston 1978), and *Diadasia enavata* and *Halictus ligatus* (Thorp and Briggs 1980).

5.2.3.3 Summary

Honey bees may be aggressive toward some interspecifics, but only when the interspecific attempts to rob their colony or when the two species forage on the same artificial feeder. Interactions while foraging on flowers are rarely aggressive.

5.3 Pollination

Several studies have quantified the contribution of honey bees to native plant pollination. Quality studies quantify the number of pollen grains deposited by different pollinators or the number of fruit/seeds resulting from single visits by pollinators to individual flowers. This is done by excluding pollinators from flowers until they open, at which time a single pollinator is allowed to visit the flower. The flower is then bagged again, then excluding all other pollinator visits. The number of pollen grains removed or deposited can then be quantified, and fruit, nut or seed set can be determined. In contrast, several studies merely count the number of pollinator visits to a flower and correlate the number of visits with seed set or fruit production. Clearly such studies cannot determine which visitor(s) were responsible for pollination. Nonetheless, we cover these studies below for completeness.

5.3.1 Pollination of native plants

5.3.1.1 Australia studies that considered single visits

Melastoma affine is a cosmopolitan pioneer shrub that is found from India to south east NSW. It only produces pollen (not nectar) and is not a target species for beekeepers. Given its Asian range, it is likely that *M. affine* co-evolved with other honey bee species. (There are 10 Asian species of *Apis*, (Oldroyd and Wongsiri 2006)). Gross and Mackay (1998) found that

honey bees deposited fewer pollen grains on the styles of *M. affine* than did native bees. Flowers that were last visited by honey bees had 415 pollen grains compared to 1148 when the native bee *Lestis bombylans* was the most recent visitor. Flowers pollinated by a single honey bee set fruit in 10% of cases, compared to 35-53% when pollinated by one individual from any of four species of native bee. Fruit set was 60-71% where a honey bee had been the last visitor and 81-88% for flowers where a native bee was the last visitor. Since most flowers are visited numerous times the actual effect of the presence of honey bees on pollination rates may be low, though honey bees are more commonly the last visitor.

Dillwynia juniperina is a widespread native shrub of dry sclerophyll forests in NSW and Victoria that requires bee pollination. Gross (2001) found no difference in fruit set between native bee- and honey bee- pollinated *D. juniperina* flowers. They further suggest that honey bees may be necessary to augment pollination. Indeed, honey bees are the sole pollinator of *D. sieberi* in winter (Lomov et al. 2010).

The Grey Mangrove, *Avicennia marina*, is a widespread mangrove species that is found from Africa to Australia and New Zealand. It likely co-evolved with honey bees within its African, Middle Eastern and Asian range. Hermansen et al. (2014) report that that only honey bees were seen foraging on *A. marina* at Australian sites. Honey bees removed 96% of pollen in a single visit. The authors suggest that honey bees have displaced one or more native pollinators. However, it is possible that the native pollinators of *A. marina* were lost due to habitat loss or some other cause, rather than by competition with honey bees, or that *A. marina* does not require insect pollination to set fruit.

Tasmanian blue gum, *Eucalyptus globulus*, is native to Tasmania and Victoria, and is a widely-planted forestry species throughout the world. Hingston et al. (2004b) found that flowers of *E. globulus* produced fewer seeds after a single visit by honey bees than following a visit from the swift parrot, *Lathamus discolour*. No seeds were set after single visits by native bees. To assess parrot pollination, caged parrots were taken to the field. *In situ* tree branches were then presented to the parrots through a door in the cages. The relevance of the findings to the field situation is questionable.

A second study of blue gum pollination (Hingston et al. 2004a) suggested that insects of a similar size as honey bees contribute less than 20% of the maximum seed-set. However, the apertures to the experimental cages were of a size that resulted in pollen being knocked off the pollen basket of foraging honey bees and thus, the study may have underestimated the contribution of honey bees to pollination.

The swift parrot is listed as an endangered species. If the swift parrot is a major pollinator of blue gums in Australia, then reductions in the population of swift parrots may increase the need for honey bee pollination. We also note that blue gums are invasive in South Africa and California where parrot pollination is unlikely, and honey bee pollination is likely.

5.3.1.2 International studies that considered single pollinator visits

Honey bees do not differ from the average non-*Apis mellifera* pollinator in pollination effectiveness. Honey bees are the most important pollinator globally, based on a review of 32 studies, of which two were Australian studies (Hung et al. 2018).

Honey bees improved pollination of the wildflower *Cistus salvifolius*, but lowered seed set in *Cistus crispus* in Spain (Magrach et al. 2017).

5.3.1.3 Australian studies that estimated the effectiveness of honey bee pollination Jervis Bay Grevillia (*Grevillia macleayana*) has a narrow distribution on the South Coast of NSW. Vaughton (1996) attributed 30% of pollen removal from *Grevillea macleayana* to (presumably feral) honey bees, while England et al. (2001) cite unpublished data indicating that honey bees remove 90% of pollen from this species. Fewer pollen grains were deposited on bird-excluded flowers than open flowers (Wheland et al. 2009). Fruit set was reduced by >50% when birds were excluded (Vaughton 1996). Bird-exclusion cages may reduce insect foraging, somewhat confounding these experiments (Wheland et al. 2009).

The hair-pinned Banksia is a woody understory shrub found in heathland from Victoria to North Queensland. Vaughton (1992) investigated *B. spinulosa* pollination in NSW. Honey bees were uncommon early in the season, but became increasingly common later in the season. Fruit set was higher in the late season, though this could be due to seasonal effects rather than the presence of honey bees. Late-season flowers that were left open achieved higher fruit set than bird-excluded flowers, suggesting that honey bees are less efficient pollinators. Nonetheless, fruit set did not differ between treatments.

Brachyloma ericoides is a heath that is wide spread in the south east of South Australia and south-west Victoria. Honey bees contact the anthers and stigma when foraging on *Brachyloma*. Capsule production was lower when birds were excluded (Celebrezze and Paton 2004).

There was a positive correlation between the number of honey bee visits and fruit production in *Callistemon rugulosus*. However, fruit production was less than when birds were allowed to forage (Paton 1993). Fruit set and pods per fruit were also lower in bird-excluded than open *Correa reflexa* (Paton 1993). There was no difference in nut set between honey bee-excluded and non-excluded macadamia (Heard 1994).

There was no difference in pollen deposition or seed set of *Eucryphia lucida* at apiary compared to control sites, but fruit set tended to be higher at apiary sites (Mallick and Driessen 2009). Caged *Banksia menziesii* had lower fruit production than open flowers (Ramsey 1988). However, honey bees deposited more pollen than is required for fruit set, pointing to other factors, such as pollen removal by beetles.

Desert Banksia, *Banksia ornate*, provides a major honey crop in South Australia and western Victoria, and has been exploited by beekeepers for over 70 years. Seed production of *B. ornata* was higher at sites with honey bees relative to control sites (Paton 1999).

5.3.1.4 International studies that estimated the effectiveness of honey bee pollination Fruit and seed set of a New Zealand native *Phormium tenax* (Murphy and Robertson 2000) and *Alseuosmia macrophylla* (Pattemore and Anderson 2013) were higher at sites with bird visitation, suggesting that honey bees were less efficient pollinators than native birds. In the United States the number of floral visits, 87-91% of which were by honey bees, was correlated with seed set of *Triteleia laxa* (Chamberlain and Schlising 2008). Honey bees transferred little pollen to *Impatiens capensis* (Wilson and Thomson 1991).

do Carmo et al. (2004) found a negative correlation between the frequency of honey bee visits to male *Clusia arrudae* flowers and seed production by female flowers that opened on the same day. Native *Eufriesea nigrohirta* foraging for resin on flowers that had previously been visited by honey bees carried less than 0.1% of the pollen grains that they did when foraging on an unvisited flower. Honey bees discard pollen from *Merremia aegyptia* in Brazil, but their contribution to pollination was not quantified (Pick and Schlindwein 2011).

In Spain two plant species (*Echium wildpretii* and *Spartocytisus supranubius*), species that are highly visited by honey bees, produced more fruit, but fewer seeds per fruit when honey bee colonies were present. Three other plant species (*Erysimum scoparium, Scrophularia glabrata, Adenocarpus viscosus*) are less-frequently visited by honey bees (Valido et al. 2019). At the level of the plant rather than individual fruit, it is likely that the number of seeds produced by *E. scoparium* and *A. viscosus* was unchanged by honey bee foraging.

5.3.1.5 Other Australian studies

Morning iris, *Orthrosanthus multiflorus*, is native to Kangaroo Island. Honey bees likely provide significant pollination to *O. multiflorus* as plants bloom for one day only, and there are not sufficient native bees to visit all flowers (Paton 1993).

Diospyros pentamera and *Neolitsea dealbata* are rainforest trees distributed from NSW to north Queensland. Honey bees are unlikely to pollinate *Diospyros pentamera*, but may pollinate *Neolitsea dealbata* (House 1989).

Honey bees are unlikely to pollinate *Grevillea* as honey bees are too small (Taylor and Wheland 1994). Honey bees contact the anthers or stigmata of *Calothmnus quadrifidus* on 42% of foraging visits (Collins et al. 1984). Only pollen-foraging honey bees (79% of visits) contacted the pollen presenters of *Grevillea macleayana* (Vaughton 1996, England et al. 2001). Honey bees collected previously-deposited pollen from *Melastoma affine*, never gathering pollen from the anthers (Gross 1993). Honey bees contact the stigmas of *Eucalyptus costata* (Horskins and Turner 1999).

5.3.1.6 Other international studies

In Peru honey bees use holes in *Sparattosperma leucanthum* made by native robber-bee species to rob nectar. They may accidentally pollinate the flowers, but this has not been quantified (Polatto et al. 2012). In Brazil, honey bees removed all the pollen from native passionfruit, but as they rarely touch the stigmas, they are unlikely to pollinate this species (Yamamoto et al. 2012). Honey bees deposit more pollen than native bees in *Metrosideros polymorpha* in Hawaii (Junker et al. 2010).

5.3.1.7 Summary

Australian and international studies suggest that pollination effectiveness can be lower when performed by honey bees relative to native species. No studies show that the presence of feral honey bees alters the reproductive success of native plants, despite their

lower pollination effectiveness. That is, frequency of visits may compensate for reduced pollen transfer per visit.

There is limited evidence that a small number of native plants may now be dependent upon honey bees for pollination. These studies also suffer from a lack of evidence for changes in reproductive success.

5.3.2 Hybridization of native plants

Inter-specific plant hybridization is a relatively common event in nature (Grant 1981). Concerns have been expressed that honey bees increase the frequency of hybridisation of native plants, resulting in sterile offspring (Matthews 1984, Paton 1993, Butz Huryn and Moller 1995, Butz Huryn 1997). Honey bees have strong species fidelity when foraging (Free 1963, Percival 1974, Butz Huryn 1997), reducing the likelihood of inter-specific pollination relative to the foraging activities of native birds and bees. We therefore suspect that honey bees do not increase the frequency of plant hybridization over natural levels. Nonetheless, as several studies have claimed this (or at least claim that honey bees carry pollen from more than one plant species). We briefly survey these studies below.

5.3.2.1 Australian studies

Both native insects and honey bees have been recorded carrying pollen of more than one plant species when foraging on the following plant genera: *Persoonia* (Bernhardt and Weston 1996), *Acacia* (Bernhardt and Walker 1985, Bernhardt 1987), *Neolitsea dealbata* and *Diospyros pentamera* (House 1989). Honey bees carried a large proportion (88-99%) of a singular species of two mangroves (*Avicennia marina* and *Aegiceras corniculatum*) and a salt marsh plant *Sarcocornia quinqueflora* (Hermansen et al. 2014).

5.3.2.2 World-wide studies

Honey bees were more likely to carry mixed pollen loads than native bees in Hawaii (Miller et al. 2015), and interspecific pollen transfer was largely driven by honey bee visitation patterns (Johnson and Ashman 2019). However, there is only one native bee genus in Hawaii, Hylaeus, consisting of at least 63 species. Honey bees did not contribute to hybridization of milkweed in the USA, *Bombus* being the primary agent (Stoepler et al. 2012).

5.3.2.3 Summary

Hybridization requires cross pollination by closely-related plant species that are nonetheless able to form a viable hybrid. Butz Huryn (1997) argues that honey bees are unlikely to increase plant hybridization due to their strong floral constancy in comparison to numerous other taxa and we support this view. We conclude that it is extremely unlikely that commercial honey bees would increase the frequency of plant hybridization above background levels in any circumstance.

5.3.3 Outcrossing of native plants

Only 10-15% of plant species are predominantly self-fertilizing (Goodwillie et al. 2005). Plants that are self-compatible may suffer from inbreeding depression (Wright et al. 2013), while plants that are not self-compatible are severely affected by a lack of suitable pollination. There has been little work comparing the distances and frequency at which honey bees and native pollinators move between plants (Richardson et al. 2000).

5.3.3.1 Australian studies

Honey bees moved twice as frequently as birds between plants of *Brachyloma ericoides*, but when birds do change plants they tend to move further away (Celebrezze and Paton 2004). Outcrossing was lower when birds and mammals were excluded from *Grevillea macleayana* (England et al. 2001), likely because they move further between plants (Wheland et al. 2009). A site that had more frequent bird visitation had higher outcrossing, however this site was of better quality that the other two sites, which may explain some of this variation (Wheland et al. 2009). Honey bees are less likely to move between plants of *Dillwynia sieberi* than the native bees *Lasioglossum clelandi* and *Megachile chrysopyga* (Lomov et al. 2010).

5.3.3.2 International studies

Honey bees and bumble bees mostly deposited self-pollen on *Phormium tenax* in New Zealand, but outcrossing rates did not differ between populations where exotic social bees were common versus uncommon (Howell and Jesson 2013). Honey bees visited 1.5 times more flowers within plants of *Dicerandra immaculata* than native pollinators in the USA, but the authors did not investigate whether this led to higher rates of inbreeding (Richardson et al. 2016). Honey bees facilitated geneflow between fragmented populations of *Dinizia excelsa* in Brazil (Dick 2001, Dick et al. 2003). Honey bees tended to visit a single flower or a single branch of the cactus *Carnegiea gigantea* in Arizona, while native bees visit different trees (McGregor et al. 1959). Similarly, honey bees visited more flowers on the same *Echium wildpretii* plant than did native bees in the Canary islands (Dupont et al. 2004). There was no difference between honey bees and *Osmia cornuta* in the frequency of inter-row flights in pears in Spain (Muñoz et al. 2014).

5.3.3.3 Summary

Outcrossing rates within a species may be elevated, reduced or unchanged by honey bee pollination, depending on the system.

5.3.4 Pollination of introduced weeds

Opinions are mixed on whether or not honey bees prefer foraging on introduced plants to native plants. If honey bees preferentially forage on introduced plants, this may reduce competition with native fauna for native plant resources (Aizen et al. 2014, Aslan et al. 2016). Second, if honey bees forage on invasive weeds this may contribute to increased dominance of these problem plants in our ecosystems (Beard 2015). However, native insects and birds may also contribute to the pollination of weedy species (Butz Huryn and Moller 1995). Again, studies that quantify pollination after single controlled visit provide higher-quality information than studies that simply correlate the number of bee visits with seed set.

5.3.4.1 Single-visit studies in Australia

Scotch broom, *Cytisus scoparius*, is an important weed of high altitude national parks in NSW. 84% of honey bee visits resulted in fruit set in *C. scoparius*, while native bees did not

pollinate this plant (Simpson et al. 2005). The number of seeds per fruit did not differ between open flowers and those that received a single visit by honey bees.

5.3.4.2 Correlational studies in Australia

Seed set of invasive *Lantana camora* (Goulson and Derwent 2004) was higher at sites that had more honey bee visits. This study can be criticised in many ways. First, sites were across a 2000 km transect from Brisbane to Daintree. There was a strong latitudinal gradient in the incidence of honey bees and fruit set, and the authors conclude that the causative factor was foraging honey bees. However, while sites may have varied in the number of honey bee visitors to flowers, they undoubtedly differed in ecological variables other than the abundance of honey bees. More importantly, the number of honey bees observed was very low at all sites and rare or absent at the majority of sites. Across 29 sites, a total of 11,600 *L. camora* inflorescences were observed but only 171 honey bees were recorded foraging on those inflorescences across two months of observations. In other words, honey bees and native bees mostly ignore *L. camera*, especially in the tropics north of 20°S.

Honey bee site visitation was correlated with seed set in invasive *Lupinus arboreus* in Tasmania (Stout et al. 2002), but only at sites where flower visits were dominated by invasive *Bombus terrestris* were excluded. A similar study found no correlation (Goulson and Rotheray 2012). Native insects were unlikely to pollinate *L. arboreus* (Stout et al. 2002).

5.3.4.3 Correlational international studies

Introduced honey bees and bumble bees are likely to be the only pollinators of the invasive Banana Vine, *Passiflora tripartite*, in New Zealand. However, their relative contribution to pollination was not quantified (Beavon and Kelly 2012). Seed production of Scotch Broom *C. scoparius* was positively correlated with the number of honey bee visits to sites (Paynter et al. 2010).

In California there was a positive correlation between the number of honey bees at a site and seed set of *Centaurea solstitialis* (Barthell et al. 2001).

Honey bees were the primary visitors to *Lespedeza cuneata* in Kansas (Woods et al. 2012) and *Eichhornia crassipes* in China (Liu et al. 2013).

5.3.4.4 Summary

Honey bees often forage on introduced plants (Telleria 1993, Goulson et al. 2002, Morales and Aizen 2006, Miller et al. 2015). Only one study has directly investigated whether honey bees contribute to weed spread, finding that they pollinate Scotch broom (*Cytisus scoparius*). Australian native bees are unlikely to pollinate Scotch Broom because they do not trip the flowers (Simpson et al. 2005).

5.4 Ecosystem integrity and function

5.4.1 Plant-pollinator networks

The study of plant-pollinator networks is an emerging area of research. These studies record which pollinator species forage on which plant species within an ecosystem, and then build a network of relationships between them (Bascompte et al. 2003). A general weakness of plant-pollinator network studies is that whether or not flower visits result in actual

pollination is often not considered (Ballantyne et al. 2015). These studies are essentially abundance correlations performed at a larger scale, considering multiple plant and floral visitor species. Indeed, many are based upon previously-collected datasets that recorded plant visitation.

A network that comprises generalist pollinators that interact with many different plant species is known as a 'nested' network (Bascompte et al. 2003). As the number of unique interactions between plant species and pollinator species increases, the nestedness of network also increases.

Connectedness is the level of generalization in the interactions at the community level, and refers to the number of observed interactions compared to the number of possible interactions in a network (Landi et al. 2018).

Modularity occurs when some species are more highly connected to each other than to the rest of the network. Networks with a large number of plants tend to be modular (>150), while networks with fewer plant species (<50) are not (Olesen et al. 2007).

Only 15% of species are structurally important to their network (Olesen et al. 2007). Removal of generalist pollinators, that is those with the most connectedness, is expected to lead to the most extreme and rapid extinction of plant species (Memmott et al. 2004). Generalist species, both plant and pollinator provide redundancy in the network (Fortuna and Bascompte 2006). Such species tend to increase nestedness, and more nested networks tend to be the most robust to extinction (Memmott et al. 2004, Burgos et al. 2007)

5.4.1.1 International studies

Santos et al. (2012) examined six plant-pollinator networks in Brazil. Africanized honey bees occupied a central position in all networks, interacting with a large number of plant species. Connectance was low in all networks, while nestedness was low to intermediate. Simulations that removed honey bees from the networks found that there was a strong decrease in nestedness, an increase in modularity and no effect on connectance. It also resulted in the removal of 5 plant species that were connected only to honey bees.

Giannini et al. (2015) found that honey bees had a strong positive effect on nestedness in 21 plant-pollinator networks in Brazil, and was fundamental to the maintenance of the whole network.

Watts et al. (2016) found that honey bees acted as hubs in the networks of eight of nine valleys in Peru. Modularity was lower in networks where more honey bee observations were made, though the nine valleys under study differed in many aspects.

Magrach et al. (2017) compared plant-pollinator networks in nine woodlands near high density orange groves and seven woodlands near low cover-orange groves, during and after orange flowering. After flowering there was a decrease in the number of interactions per pollinator species (i.e. some pollinators changed their behaviour and foraged on fewer plant species). Likely, these changes are driven by honey bee abundance.

Norfolk et al. (2018) compared bee-plant interactions at plots in Egypt where native honey bees are present (low mountains) or rare (high mountains). The low mountain network was more nested, although conclusions are difficult to draw due to the many factors that differed between the regions. For example, less than half of plant species were found in both the low- and high-mountain sites. Honey bees had resource overlap with range-restricted bees and rarely foraged on range-restricted plants. Simulated removal of honey bees from the low mountain network decreased pollinator generalization, increased plant specialization and decreased nestedness.

Hung et al. (2018) created a global dataset using 80 published plant-pollinator networks. 5% of plant species are visited exclusively by honey bees, but nearly half of all species are not visited by honey bees. Honey bees may disrupt interactions between plants and pollinators, including when they are only modestly abundant. The authors conclude that honey bees are the single most important pollinator species across natural systems.

Valido et al. (2019) studied plant-pollinator networks in a high-altitude national park in the Canary Islands. Honey bees are either native to the Canary Islands or were established either hundreds or thousands of years ago. Teide National Park is used by beekeepers every summer, with over 2000 hives introduced during the main flowering season. Valido et al. examined pollination networks prior to and after introduction of the commercial colonies. Clearly such an analysis is flawed, since flowering and insect emergence is correlated with season. Nonetheless the authors report that:

'The onset of the beekeeping period triggered considerable shifts between the pre- and [post-apis] periods, leading to a reduction in the number of pollinator species but also in interaction links. For example, we did not record 8 (in 2008), then 13 (2009) pollinator species through the [post] apis-period that were already observed in the pre-periods.'

With no contemporary control sites, this conclusion is unconvincing. However, in one of the years of the study, one corner of the park was not used by beekeepers. This area showed a greater diversity of non-honey bee flower visitors that the sites where honey bees were present. The authors did not give a reason as to why honey bees were not present in the area, but potentially it was because the area was unsuitable for beekeeping in that particular year, rather than an experimental manipulation.

This study is notable in that it is the first to examine the effects of removing commercial honey bees on a pollination network rather than simulating their removal. Despite the obvious methodological flaws, the study suggests that honey bees have measurable impacts on pollination networks and that they contribute to pollination of a wide variety of plants.

5.4.2 Summary

Despite the generalization that nested pollination networks are more stable, it is important to realize that not all plant species can be pollinated by generalist pollinators. Such species and their pollinators may suffer adverse effects in the presence of exotic honey bees if the honey bees displace native species, or rob floral resources without affecting pollination. Honey bees can cause significant changes in the structure of pollination networks. Honey bees may fill empty pollination niches (Traveset and Richardson 2006, Hung et al. 2018). The effect of their removal from areas where they have been long established is poorly understood.

6. CONCLUSIONS

This report has considered the findings of over 200 papers (Table 1, Table 2) that investigate the effect of honey bees on native animals and both native and non-native plants.

Abundance correlations and resource overlap do not conclusively demonstrate that competition is taking place, (5.2.1), but can be suggestive. There are demonstrated instances where native fauna are able to remove large proportion of the available floral resources before honey bees commence foraging, or even while they forage concurrently – that is the native species can compete and co-exist with honey bees. Conversely, other studies are suggestive of competition and alteration of pollinator networks.

The results of studies that tried to ascertain whether the demography of native fauna populations is affected by the presence of honey bees are mixed (5.2.2). Many of these studies do not have appropriate controls and replication, do not significantly manipulate the number of honey bee colonies at sites and suffer from low power to detect the effects of honey bees. As such, these studies do not provide compelling evidence that honey bees affect the reproductive output of native species.

Honey bees may be aggressive toward native fauna in limited instances (5.2.3) mostly involving inter-specific nest-robbing by Africanized honey bees.

The response of native and non-native plants to pollination by honey bees varies (5.3). Honey bees may be less efficient pollinators of some native plants, but honey bees are equal to the average pollinator. Some native plants have become dependent upon honey bees for pollination (5.3.1). Honey bees usually show plant constancy, and are generally unlikely to increase hybridization of native plants above that of other pollinators (5.3.2). This plant constancy sometimes results in reduced outcrossing from honey bee foraging, though in other instances outcrossing may be increased (5.3.3).

Honey bees pollinate some invasive weeds which are unlikely to be pollinated by native fauna, though native fauna also contribute to the pollination of some weeds (5.3.4).

As a generalist pollinator, honey bees are strong players in plant-pollinator networks and can change the structure of such networks (5.4). Networks with honey bees have higher nestedness, which may contribute to the stability of the network. Simulation studies suggest that the loss of honey bees will result in the extinction of a small number of plants, while a single empirical study suggests that pollinator diversity may be decreased when honey bees are present versus absent.

We conclude that there is an absence of evidence that commercial honey bees have ecological impacts beyond that of feral bees to the extent that commercial beekeeping

should be excluded from all national parks in Queensland. If the precautionary principal is to be applied then sites should be assessed for their conservation and beekeeping value and commercial loads of bees excluded from only half of them and monitored for a number of years to ensure that there is not a shortfall in pollination at excluded sites.

7. CITED LITERATURE

- Abe, T., S. Makino, and I. Okochi. 2008. Why have endemic pollinators declined on the Ogasawara Islands? Biodiversity and Conservation **17**:1465-1473.
- Aizen, M. A., C. L. Morales, D. P. Vázquez, L. A. Garibaldi, A. Sáez, and L. D. Harder. 2014. When mutualism goes bad: density-dependent impacts of introduced bees on plant reproduction. New Phytologist **204**:322-328.
- Aslan, C. E., C. T. Liang, B. Galindo, K. Hill, and W. Topete. 2016. The role of honey bees as pollinators in natural areas. Natural Areas Journal **36**:478-488.
- Australian Honey Bee Industry Council. 2005. Honey bees in Australian conserved forests: policy document. Australian Honey Bee Industry Council, Sydney, NSW, Australia.
- Ballantyne, G., K. C. R. Baldock, and P. G. Willmer. 2015. Constructing more informative plant-pollinator networks: visitation and pollen deposition networks in a heathland plant community. Proceedings of the Royal Society of London B **282**:20151130.
- Barthell, J. F., J. M. Randall, R. W. Thorp, and A. M. Wenner. 2001. Promotion of seed set in yellow star-thistle by honey bees: evidence of an invasive mutualism. Ecological Applications **11**:1870-1883.
- Bascompte, J., P. Jordano, C. J. Melián, and J. M. Olesen. 2003. The nested assembly of plant-animal mutualistic networks. Proceedings of the National Academy of Science USA **100**:9383-9387.
- Beard, C. 2015. Honeybees (*Apis mellifera*) on public conservation lands: a risk analysis. New Zealand Department of Conservation, Wellington, New Zealand.
- Beavon, M. A., and D. Kelly. 2012. Invasional meltdown: pollination of the invasive liana *Passiflora tripartita* var. *Mollissima* (Passifloraceae) in New Zealand. New Zealand Journal of Ecology **36**:100-107.
- Bennik, R. M. 2009. The effects of honeybees (*Apis mellifera*) on the biodiversity of manuka (*Leptospermum scoparium*) patches. Massey University, Palmerston North, New Zealand.
- Bernhardt, P. 1987. A comparison of the diversity, density, and foraging behavior of bees and wasps on Australian *Acacia*. Annals of the Missouri Botanical Garden **74**:42-50.
- Bernhardt, P., and S. Walker. 1985. Insect foraging on *Acacia retinodes* var. *retinodes* in Victoria, Australia. International Journal of Entomology **27**:97-101.
- Bernhardt, P., and P. H. Weston. 1996. The pollination ecology of *Persoonia* (Froteaceae) in eastern Australia. Journal of Plant Systematics **6**:775-804.
- Bond, H. W., and W. L. Brown. 1979. The exploitation of floral nectar in *Eucalyptus incrassata* by honeyeaters and honeybees. Oecologia **44**:105-111.
- Burgos, E., H. Ceva, R. P. J. Perazzo, M. Devoto, D. Medan, M. Zimmermann, and A. M. Delbue. 2007. Why nestedness in mutualistic networks? Journal of Theoretical Biology 249:307-313.
- Butz Huryn, V. M. 1997. Ecological impacts of introduced honey bees. Quarterly Review of Biology **72**:275-297.

- Butz Huryn, V. M., and H. Moller. 1995. An assessment of the contribution of honey bees (*Apis mellifera*) to weed reproduction in New Zealand protected natural areas. New Zealand Journal of Ecology **19**:111-122.
- Cairns, C. E., R. Villanueva-Gutiérrez, S. Kopturn, and D. B. Bray. 2005. Bee populations, forest disturbance, and Africanization in Mexico. Biotropica **37**:686-692.
- Celebrezze, T., and D. C. Paton. 2004. Do introduced honeybees (*Apis mellifera*, Hymenoptera) provide full pollination service to bird-adapted Australian plants with small flowers? An experimental study of *Brachyloma ericoides* (Epacridaceae). Austral Ecology **29**:129.136.
- Chamberlain, S. A., and R. A. Schlising. 2008. Role of honey bees (Hymenoptera: Apidae) in the pollination biology of a California native plant, *Triteleia laxa* (Asparagales: Themidaceae). Environmental Entomology **37**:808-816.
- Chapman, N. C., B. A. Harpur, J. Lim, T. E. Rinderer, M. H. Allsopp, A. Zayed, and B. P. Oldroyd. 2015. A SNP test to identify Africanized honeybees via proportion of 'African' ancestry. Molecular Ecology Resources **15**:1346-1355.
- Chapman, N. C., B. A. Harpur, J. Lim, T. E. Rinderer, M. H. Allsopp, A. Zayed, and B. P.
 Oldroyd. 2016. Hybrid origins of Australian honeybees (*Apis mellifera*). Apidologie
 47:26-34.
- Chapman, N. C., J. Lim, and B. P. Oldroyd. 2008. Population genetics of commercial and feral honey bees in Western Australia. Journal of Economic Entomology **101**:272-277.
- Collins, B. G., C. Newland, and P. Briffa. 1984. Nectar utilization and pollination by Australian honeyeaters and insects visiting *Calothamnus quadrifidus* (Myrtaceae). Australian Journal of Ecology **9**:353-365.
- Dick, C. W. 2001. Genetic rescue of remnant tropical trees by an alien pollinator. Proceedings of the Royal Society of London B **268**:2391-2396.
- Dick, C. W., G. Etchelecu, and F. Austerlitz. 2003. Pollen dispersal of tropical trees (*Dinizia excelsa*: Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian fainforest. Molecular Ecology **12**:753-764.
- do Carmo, R. M., E. V. Franceschinelli, and A. da Silveira. 2004. Introduced honeybees (*Apis mellifera*) reduce pollination success without affect the floral resource taken by native pollinators. Biotropica **36**:371-376.
- Duchateau, M. J., H. H. W. Veltius, and J. J. Boomsma. 2004. Sex ratio variation in the bumblebee *Bombus terrestris*. Behavioral Ecology **15**:71-82.
- Dupont, Y. L., D. M. Hansen, A. Valido, and J. M. Olesen. 2004. Impact of introduced honey bees on native pollination interactions of the endemic *Echium wildpretii* (Boraginaceae) on Tenerife, Canary Islands. Biological Conservation **118**:301-311.
- Elbgami, T., W. E. Kunin, W. O. H. Hughes, and J. C. Biesmeijer. 2014. The effect of proximity to a honeybee apiary on bumblebee colony fitness, development, and performance. Apidologie **45**:504-513.
- England, P. R., F. Beynon, D. J. Ayre, and R. J. Wheland. 2001. A molecular genetic assessment of mating-system variation in a naturally bird-pollinated shrub: contributions from birds and introduced honeybees. Conservation Biology **15**:1645-1655.
- Environmental Protection Agency. 2007. Managing beekeeping on EPA managed lands. Queensland Government, QLD, Australia.
- Everts, S. 1995. Inter-specific competition amongst honey-bees and solitary wild bees. Natur und Landschaft **70**:165-172.

Evison, S. E. F. 2015. Chalkbrood: epidemiological perspectives for the host-parasite relationship. Current Opinion in Insect Science **10**:65-70.

Fortuna, M. A., and J. Bascompte. 2006. Habitat loss and the structure of plant-animal mutualistic networks. Ecology Letters **9**:281-286.

Free, J. B. 1963. The flower constancy of honeybees. Journal of Animal Ecology **32**:119-131.

- Fürst, M. A., D. P. McMahon, J. L. Osborne, R. J. Paxton, and M. J. F. Brown. 2014. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature **506**:364-366.
- Giannini, T. C., L. A. Garibaldi, A. L. Acosta, J. S. Silva, K. P. Maia, A. M. Saraiva, P. R. Guimarães, and A. M. P. Kleinert. 2015. Native and non-native supergeneralist bee species have different effects on plant-bee networks. PLoS One **10**:e0137198.
- Gibbs, D. M. H., and I. F. Muirhead. 1998. The economic value and environmental impact of the Australian beekeeping industry. Canberra, ACT, Australia.
- González-Varo, J. P., F. J. Ortiz-Sánchez, and M. Vilà. 2016. Total bee dependence on one flower species despite available congeners of similar floral shape. PLoS One **11**:e0163122.
- Goodwillie, C., S. Kalisz, and C. Eckert. 2005. The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annual Review of Ecology, Evolution and Systematics **36**:47-79.
- Goulson, D. 2003. Effects of introduced bees on native ecosystems. Annual Review of Ecology, Evolution and Systematics **34**:1-26.
- Goulson, D., and L. C. Derwent. 2004. Synergistic interactions between an exotic honeybee and an exotic weed: pollination of *Lantana camara* in Australia. Weed Research 44:195-202.
- Goulson, D., and W. O. H. Hughes. 2015. Mitigating the anthropogenic spread of bee parasites to protect wild pollinators. Biological Conservation **191**:10-19.
- Goulson, D., and E. L. Rotheray. 2012. Population dynamics of the invasive weed *Lupinus arboreus* in Tasmania, and interactions with two non-native pollinators. Weed Research **52**:535-541.
- Goulson, D., and K. R. Sparrow. 2009. Evidence for competition between honeybees and bumblebees; effects on bumblebee worker size. Journal of Insect Conservation 13:177-181.
- Goulson, D., J. C. Stout, and A. R. Kells. 2002. Do exotic bumblebees and honeybees compete with native flower-visiting insects in Tasmania? Journal of Insect Conservation **6**:179-189.
- Grant, V. 1981. Plant Speciation. Columbia University Press, New York, USA.
- Gross, C. L. 1993. The breeding system and pollinators of *Melastoma affine* (Melastomataceae): a pioneer shrub in tropical Australia. Biotropica **25**:468-474.
- Gross, C. L. 2001. The effect of introduced honeybees on native bee visitation and fruit-set in *Dillwynia juniperina* (Fabaceae) in a fragmented ecosystem. Biological Conservation **102**:89-95.
- Gross, C. L., and D. Mackay. 1998. Honeybees reduce fitness in the pioneer shrub *Melastoma affine* (Melastomataceae). Biological Conservation **86**:169-178.
- Heard, T. A. 1994. Behaviour and pollination efficiency of stingless bees and honey bees on macadamia flowers. Journal of Apicultural Research **33**:191-198.
- Hermansen, T. D., D. R. Britton, D. J. Ayre, and T. E. Minchinton. 2014. Identifying the real pollinators? Exotic honeybees are the dominant flower visitors and only effective

pollinators of *Avicennia marina* in Australian temperate mangroves. Estuaries and Coasts **37**:621-635.

- Hingston, A. B., B. M. Potts, and P. B. McQuillan. 2004a. Pollination services provided by various size classes of flower visitors to *Eucalyptus globulus* spp. *globulus* (Myrtaceae). Australian Journal of Botany **52**:353-369.
- Hingston, A. B., B. M. Potts, and P. B. McQuillan. 2004b. The swift parrot, *Lathamus discolor* (Psittacidae), social bees (Apidae) and native insects as pollinators of *Eucalyptus globulus* ssp. *globulus* (Myrtaceae). Australian Journal of Botany **52**:371-379.
- Hinson, E. M., M. Duncan, J. Lim, J. Arundel, and B. P. Oldroyd. 2015. The density of feral honey bee (*Apis mellifera*) colonies in South East Australia is greater in undisturbed than in disturbed habitats. Apidologie **46**:403-413.
- Horskins, K., and V. B. Turner. 1999. Resource use and foraging patterns of honeybees, *Apis mellifera*, and native insects on flowers of *Eucalyptus costata*. Australian Journal of Ecology **24**:221-227.
- House, S. M. 1989. Pollen movement to flowering canopies of pistillate individuals of three rain forest tree species in tropical Australia. Australian Journal of Ecology **14**:77-94.
- Howell, V., and L. K. Jesson. 2013. The effect of bird and bee visitation on pollination and reproductive success in *Phormium tenax*. New Zealand Journal of Botany **51**:194-205.
- Hudewenz, A., and A. M. Klein. 2013. Competition between honey bees and wild bees and the role of nesting resources in a nature reserve. Journal of Insect Conservation 17:1275-1283.
- Hudewenz, A., and A. M. Klein. 2015. Red mason bees cannot compete with honey bees for floral resources in a cage experiment. Ecology and Evolution **5**:5049-5056.
- Hung, K. L. J., J. M. Kingston, M. Albrecht, D. A. Holway, and J. R. Kohn. 2018. The worldwide importance of honey bees as pollinators in natural habitats. Proceedings of the Royal Society of London B 285:20172140.
- Jean, R. P. 2005. Quantifying a rare event: pollen theft by honey bees from bumble bees and other bees (Apoidea: Apidae, Megachilidae) foraging at flowers. Journal of the Kansas Entomological Society **78**:172-175.
- Johnson, A. L., and T.-L. Ashman. 2019. Consequences of invasion for pollen transfer and pollination revealed in a tropical island ecosystem. New Phytologist **221**:142-154.
- Jones, J. C., M. R. Myerscough, S. Graham, and B. P. Oldroyd. 2004. Honey bee nest thermoregulation: diversity promotes stability. Science **305**:402-404.
- Junker, R. R., R. Bleil, C. C. Daehler, and N. Blüthgen. 2010. Intra-floral resource partitioning between endemic and invasive flower visitors: consequences for pollinator effectiveness. Ecological Entomology **35**:760-767.
- Karasiński, J. M. 2018. The economic valuation of Australian managed and wild honey bee pollinators. Curtin University, Bentley, WA, Australia.
- Kato, M. 1992. Endangered bee fauna and its hosts in the Ogasawara Islands. Japanese Journal of Entomology **60**:487-494.
- Kato, M., A. Shibata, T. Yasui, and H. Nagamasu. 1999. Impact of introduced honey bees, *Apis mellifera*, upon native bee communities in the Bonin (Ogasawara) Islands. Researches on Population Ecology **41**:217-228.
- Keith, D. G., and J. L. Briggs. 1987. Honey bees in Australian conserved forests. Federal Council of Australian Apiarists' Associations, Australia.

- Kühn, J., A. Hamm, M. Schindler, and D. Wittmann. 2006. Ressourcenaufteilung zwischen der oligolektischen Blattschneiderbiene *Megachile lapponica* L. (Hymenoptera. Apiformes) und anderen Blütenbesuchern am schmalblättrigen Weidenröschen (*Epilobium angustifolium*, Onagraceae). Mitteilungen der Deutschen Gesellschaft fuer Allgemeine und Angewandte Entomologie **15**:389-391.
- Landi, P., H. O. Minoarivelo, Å. Brännström, C. Hui, and U. Dieckmann. 2018. Complexity and stability of ecological networks: a review of the theory. Population Ecology **60**:319-345.
- Laroca, S., and M. L. Winston. 1978. Interaction between *Apis* and *Bombus* (Hymenoptera: Apidae) on the flowers of tall thistle; honeybees gather pollen from bodies of bumblebees. Journal of the Kansas Entomological Society **51**:274-275.
- Liu, W., Y. Wang, Q. Chen, and S. Yu. 2013. Pollination of invasive Eichhornia crassipes (pontederiaceae) by the introduced honeybee (*Apis mellifera* L.) in South China. Plant Systematics and Evolution **299**:817-825.
- Lomov, B., D. A. Keith, and D. F. Hochuli. 2010. Pollination and plant reproductive success in restored urban landscapes dominated by a pervasive exotic pollinator. Landscape and Urban Planning **96**:232-239.
- Ludwig, J. A., and J. F. Reynolds. 1988. Statistical Ecology. Wiley, New York, USA.
- Magrach, A., J. P. González-Varo, M. Boiffier, M. Vilà, and I. Bartomeus. 2017. Honeybee spillover reshuffles pollinator diets and affects plant reproductive success. Nature Ecology and Evolution **1**:1299-1307.
- Mallick, S. A., and M. M. Driessen. 2009. Impacts of hive honeybees on Tasmanian leatherwood *Eucryphia lucida* Labill. (Eucryphiacea). Austral Ecology **34**:185-195.
- Mallinger, R. E., H. R. Gaines-Day, and C. Cratton. 2017. Do managed bees have negative effects on wild bees?: A systematic review of the literature. PLoS One **12**:e0189268.
- Manning, R. 1997. The honey bee debate: a critique of scientific studies of honey bees *Apis mellifera* and their alleged impact on Australian wildlife. Victorian Naturalist **114**:13-22.
- Matthews, E. 1984. To bee or not...? Bees in national parks? The introduced honeybee in conservation parks in South Australia. People, Parks and Preservation. Magazine of the South Australian National Parks Association:14.
- McGregor, S. E., S. M. Alcorn, E. B. Kurtz, and G. D. Butler. 1959. Bee visitors to saguaro flowers. Journal of Economic Entomology **52**:1002-1004.
- Memmott, J., N. M. Waser, and M. V. Price. 2004. Tolerance of pollination networks to species extinctions. Proceedings of the Royal Society of London B **271**:2605-2611.
- Miller, A. D., B. J. Brosi, K. Magnacca, G. C. Daily, and L. Pejchar. 2015. Pollen carried by native and nonnative bees in the large-scale reforestation of pastureland in Hawai'i: implications for pollination. Pacific Science **69**:67-79.
- Moncur, M. W. 2005. Do current commercial beekeeping practices threaten Australian fauna and flora? A report to the Australian Honey Bee Industry Council. Canberra, Austrlia.
- Morales, C. L., and M. A. Aizen. 2006. Invasive mutualisms and the structure of plantpollinator interactions in the temperate forests of north-west Patagonia, Argentina. Journal of Ecology **94**:171-180.
- Morse, R. A., and N. E. Gary. 1961. Insect invaders of the honeybee colony. Bee World **42**:179-181.

- Muñoz, I., A. Cepero, M. A. Pinto, R. Martin-Hernandez, M. Higes, and P. de la Rúa. 2014. Presence of *Nosema ceranae* associated with honeybee queen introduction. Infection, Genetics and Evolution **23**:161-168.
- Murphy, C., and A. Robertson. 2000. Preliminary study of the effects of honey bees (*Apis mellifera*) in Tongariro National Park. Department of Conservation, Wellington, New Zealand.
- Norfolk, O., F. Gilbert, and M. P. Eichhorn. 2018. Alien honeybees increase pollination risks for range-restricted plants. Diversity and Distributions **24**:705-713.
- Oldroyd, B. P., S. H. Lawler, and R. H. Crozier. 1994. Do feral honey bees (*Apis mellifera*) and regent parrots (*Polytelis anthopeplus*) compete for nest sites? Australian Journal of Ecology **19**:70-76.
- Oldroyd, B. P., E. G. Thexton, S. H. Lawler, and R. H. Crozier. 1997. Population demography of Australian feral bees (*Apis mellifera*). Oecologia **111**:381-387.
- Oldroyd, B. P., and S. Wongsiri. 2006. Asian Honey Bees: Biology, Conservation, and Human Interactions. Harvard University Press, Cambridge, MA, USA.
- Olesen, J. M., J. Bascompte, Y. L. Dupont, and P. Jordano. 2007. The modularity of pollination networks. Proceedings of the National Academy of Science USA **104**:19891-19896.
- Ott, D., P. Hühn, and R. Claβen-Bockhoff. 2016. *Salvia apiana* a carpenter bee flower? Flora **221**:82-91.
- Paini, D. R. 2004. Impact of the introduced honey bee (*Apis mellifera*) (Hymenoptera: Apidae) on native bees: a review. Austral Ecology **29**:399-407.
- Paini, D. R., and J. D. Roberts. 2005. Commercial honey bees (*Apis mellifera*) reduce the fecundity of an Australian native bee (*Hylaeus alcyoneus*). Biological Conservation 123:103-112.
- Paini, D. R., M. R. Williams, and J. D. Roberts. 2005. No short-term impacts of honey bees on the reproductive success of an Australian native bee. Apidologie **36**:613-621.
- Paton, D. C. 1993. Honeybees in the Australian environment. BioScience **43**:95-103.
- Paton, D. C. 1999. Impact of commercial honeybees on flora and fauna in Ngarkat Conservation Park. Canberra, Australia.
- Pattemore, D. E., and S. H. Anderson. 2013. Severe pollen limition in populations of the New Zealand shrub *Alseuosmia macrophylla* (Alseuosmiaceae) can be attributed to the loss of pollinating bird species. Austral Ecology **38**:95-102.
- Paynter, Q., A. Main, A. H. Gourlay, P. G. Peterson, S. V. Fowler, and Y. M. Buckley. 2010. Disruption of an exotic mutualism can improve management of an invasive plant: varroa mite, honeybees and biological control of Scotch broom *Cytisus scoparius* in New Zealand. Journal of Applied Ecology **47**:309-317.
- Pechhacker, H., and C. Zeillinger. 1994. Competition between honeybees and solitary bees. Apidologie **25**:492-493.
- Percival, M. 1974. Floral ecology of coastal scrub in Southeast Jamaica. Biotropica **6**:104-129.
- Pick, R. A., and C. Schlindwein. 2011. Pollen partitioning of three species of Convolvulaceae among oligolectic bees in the Caatinga of Brazil. Plant Systematics and Evolution 293:147-159.
- Polatto, L. P., J. Chaud-Netto, J. C. S. Dutra, and V. V. Alves-Junior. 2012. Exploitation of floral resources on *Sparattosperma leucanthum* (Bignoniaceae): foraging activity of the pollinators and the nectar and pollen thieves. Acta Ethology **15**:119-126.

- Ramsey, M. W. 1988. Differences in pollinator effectiveness of birds and insects visiting *Banksia menziesii* (Proteaceae). Oecologia **76**:119-124.
- Richardson, M. B. G., D. J. Ayre, and R. J. Whelan. 2000. Pollinator behaviour, mate choice and the realised mating systems of *Grevillea mucronulata* and *Grevillea sphacelata*. Australian Journal of Botany **48**:357-366.
- Richardson, M. L., C. P. Keathley, and C. L. Peterson. 2016. Breeding system of the critically endangered Lakela's Mint and influence of plant height on pollinators and seed output. Population Ecology **58**:277-284.
- Roubik, D. W. 1980. Foraging behavior of competing Africanized honeybees and stingless bees. Ecology **61**:836-845.
- Roubik, D. W. 1983. Experimental community studies: time-series test of competition between African and neotropical bees. Ecology **64**:971-978.
- Ruttner, F. 1988. Biogeography and Taxonomy of Honeybees. Springer-Verlag, Berlin.
- Salvin, S. 2015. Compatibility of Management Objectives on Public Lands with Beekeeping. Canberra, Australia.
- Santos, G. M. d. M., C. M. L. Aguiar, J. Genini, C. F. Martins, F. C. V. Zanella, and M. A. R. Mello. 2012. Invasive Africanized honeybees change the structure of native pollination networks in Brazil. Biological Invasions **14**:2369-2378.
- Schwarz, M. P., and P. S. Hurst. 1997. Effects of introduced honey bees on Australia's native bee fauna. Victorian Naturalist **114**:9-11.
- Schwarz, M. P., P. F. Kukuk, and C. L. Gross. 1991. Assessment of competition between honeybees and native bees. World Wild-life Fund Australia, Sydney, NSW, Australia.
- Seeley, T. D., S. Camazine, and J. Sneyd. 1991. Collective decision-making in honey bees: how colonies choose among nectar sources. Behavioural Ecology and Sociobiology 28::277-290.
- Seeman, O. 1994. The impact of managed honey bees on native Australian animals and plants. University of Queensland, Brisbane, Queensland, Australia.
- Shpigler, H., M. Tamarkin, Y. Gruber, M. Poleg, A. J. Siegel, and G. Bloch. 2013. Social influences on body size and developmental time in the bumblebee *Bombus terrestris*. Behavioural Ecology and Sociobiology **67**:1601-1612.
- Simpson, S. R., C. L. Gross, and L. X. Silberbauer. 2005. Broom and honeybees in Australia: an alien liaison. Plant Biology **7**:541-548.
- Somerville, D. 2010. Forestry plantations and honeybees. Canberra, Australia.
- Spessa, A. 1999. The behavioural and population ecology of an Australian native bee, *Amphylaeus morosus* Smith (Colletidae: Hylaeinae). Australian National University, Canberra, Australian Capital Teritory, Australia.
- Steffan-Dewenter, I., and T. Tscharntke. 2000. Resource overlap and possible competition between honey bees and wild bees in central Europe. Oecologia **122**:288-296.
- Stoepler, T. M., A. Edge, A. Steel, R. L. O'Quinn, and M. Fishbein. 2012. Differential pollinator effectiveness and importance in a milkweed (*Asclepias*, Apocynaceae) hybrid zone. American Journal of Botany **99**:448-458.
- Stout, J. C., A. R. Kells, and D. Goulson. 2002. Pollination of the invasive exotic shrub *Lupinus* abroreus (Fabaceae) by introduced bees in Tasmania. Biological Conservation 106:425-434.
- Stout, J. C., and C. L. Morales. 2009. Ecological impacts of invasive alien species on bees. Apidologie **40**:388-409.

Sugden, E. A., and G. H. Pyke. 1991. Effects of honey bees on colonies of *Exoneura asimillima*, an Australian native bee. Australian Journal of Ecology **16**:171-181.

- Sugden, E. A., R. W. Thorp, and S. L. Buchmann. 1996. Honey bee native bee competition: focal point for environmental change and apicultural response in Australia. Bee World **77**:26-44.
- Taylor, G., and R. J. Wheland. 1994. Can honeybees pollinate *Grevillea*? Australian Zoologist **24**:193-196.
- Telleria, M. C. 1993. Floraison et récolte du pollen par les abeilles domestiques (*Apis mellifera* L var *ligustica*) dans la pampa argentine. Apidologie **24**:109-120.
- Thoenes, S. C. 1993. Fatal attraction of certain large-bodies native bees to honey bee colonies. Journal of the Kansas Entomological Society **66**:210-213.
- Thomson, D. 2004. Competitive interactions between the invasive European honey bee and native bumble bees. Ecology **85**:458-470.
- Thorp, R. W., and D. L. Briggs. 1980. Bees collecting pollen from other bees (Hymenoptera: Apoidea). Journal of the Kansas Entomological Society **53**:166-170.
- Traveset, A., and D. M. Richardson. 2006. Biological invasions as disruptors of plant reproductive mutualisms. Trends in Ecology and Evolution **21**:208-216.
- Valido, A., M. C. Rodríguez-Rodríguez, and P. Jordano. 2019. Honeybees disrupt the structure and functionality of plant-pollinator networks. Scientific Reports **9**:4711.
- van Dijk, J., J. Gomboso, and C. Levantis. 2016. Australian honey bee industry: 2014-15 survey results. Department of Agriculture and Water Resources, Canberra, ACT, Australia.
- Vaughton, G. 1992. Effectiveness of nectarivorous birds and honeybees as pollinators of *Banksia spinulosa* (Proteaceae). Australian Journal of Ecology **17**:43-50.
- Vaughton, G. 1996. Pollination disruption by European honeybees in the Australian birdpollinated shrub *Grevillea barklyana* (Proteaceae). Plant Systematics and Evolution **200**:89-100.
- Visscher, P. K., and T. D. Seeley. 1982. Foraging strategy of honeybee colonies in a temperate deciduous forest. Ecology **63**:1790-1801.
- Watts, S., C. F. Dormann, A. M. M. González, and J. Ollerton. 2016. The influence of floral traits on specialization and modularity of plant-pollinator networks in a biodiversity hotspot in the Peruvian Andes. Annals of Botany **118**:415-429.
- Weatherhead, T. 1986. Boxes to Bar Hives: Beekeeping History of Queensland. International Colour Productions, Stanthorpe, QLD, Australia.
- Weatherhead, T. 2018. Statistics for Australia. Australian Honey Bee Industry Council Newsletter. Australian Honey Bee Industry Council.
- Wheland, R. J., D. J. Ayre, and F. Beynon. 2009. The birds and the bees: pollinator behaviour and variation in the mating system of the rare shrub *Grevillea macleayana*. Annals of Botany **103**:1395-1401.
- Williams, G. A., and P. Adam. 1997. The composition of the bee (Apoidea: Hymenoptera) fauna visiting flowering trees in New South Wales lowland subtropical rainforest remnants. Proceedings of the Linnean Society of New South Wales **118**:69-95.
- Wilson, P., and J. D. Thomson. 1991. Heterogeneity among floral visitors leads to discordance between removal and deposition of pollen. Ecology **72**:1503-1507.
- Winston, M. L. 1987. The Biology of the Honey Bee. Harvard University Press, Cambridge, MA, USA.

- Winston, M. L. 1992. Killer Bees: the Africanized Honey Bee in the Americas. Harvard University Press, Cambridge, MA, USA.
- Wojcik, V. A., L. A. Morandin, L. D. Adams, and K. E. Rourke. 2018. Floral resource competition between honey bees and wild bees: is there clear evidence and can we guide management and conservation? Environmental Entomology **47**:822-833.
- Woods, T. M., J. L. Jonas, and C. J. Ferguson. 2012. The invasive *Lespedeza cuneata* attracts more insect pollinators than native congeners in tallgrass prairie with variable impacts. Biological Invasions **14**:1045-1059.
- Wright, S. I., S. Kalisz, and T. Slotte. 2013. Evolutionary consequences of self-fertilization in plants. Proceedings of the Royal Society of London B **280**:20130133.
- Yamamoto, M., C. I. da Silva, S. C. Augusto, A. A. A. Barbosa, and P. E. Oliveira. 2012. The role of bee diversity in pollination and fruit set of yellow passion fruit (*Passiflora edulis* forma *flavicarpa*, Passifloraceae) crop in Central Brazil. Apidologie **43**:515-526.

Table 1: Review articles

Reference	Conclusions	Effect
(Keith and Briggs 1987, AHBIC 2005)	The impact of managed Apis on Australian flora and fauna is insignificant	±
Beekeeping Industry policy document not	Evidence does not support exclusion of managed Apis from conserved forests	±
peer reviewed	Competition has been suggested when resources are limiting, but not that this leads to a reduction in reproductive success	±
	No additional long-term stress is caused above that of feral Apis	±
	Sites are used intermittently and for short periods	±
	<i>Apis</i> are only placed under conditions of nectar abundance and research has been done when nectar is limiting	±
(Alaux et al. 2019) Peer reviewed	Limiting beekeepers to agricultural areas would result in colony losses due to lack of forage and pollution and loss of revenue due to the poor market for honey produced from crops	±
	Extensive use of commercial <i>Apis</i> may be problematic for conservation and the number of hives should be controlled	-
(Aslan et al. 2016)	The impact of Apis on pollination in natural areas is context dependent	±
Peer reviewed	Apis occupies a central role in plant-pollinator networks	±
	In many cases Apis is an imperfect replacement for native pollinators	±
(Beard 2015)	Despite the lack of conclusive evidence of negative impact of Apis in New Zealand, they pose	-
Government report not peer reviewed	a threat to native biodiversity	
	Access to native forests are required for building hive strength and health	±
	Native floral resources (particularly manuka) underpin the industry	±
	Care should be taken to avoid placing bees at critical life-stage of indigenous fauna	-
	Exclude managed bees from high conservation value areas where there has been no historic use	-
	Secure some <i>Apis</i> free areas	-
	Exclude Apis from areas where problem weeds occur	-
(Butz Huryn 1995)	Apis may have little direct effects on plants through competition with other visitors	±
Peer reviewed	There is overlap in resource use with other pollinators	±
(Butz Huryn 1997) Peer reviewed	<i>Apis</i> unlikely to increase hybridization of native flora and probably contributes little to the success of most weeds	±
	Apis alters the foraging behaviour and abundance of some fauna on flowers	-
	Studies are often confounded with habitat changes	±

	Apis are floral parasites of 4 native Australian plants	-
(Butz Huryn and Moller 1995)	Many weeds are important for honey production worldwide	-
Peer reviewed	Apis are important pollinators of some weeds (main pollinator 3%, medium level of	-
	influence 9%)	
	Apis probably contribute little to the reproductive success of few weeds (minimal influence	±
	36%, no influence 27%)	
	Native birds and bees likely also contribute to pollination of some weeds	±
(Cane and Tepedino 2017)	Value of Apis as pollinators declines when they are deprived good nutrition outside	±
Peer reviewed	pollination contracts	
	Smaller more widely spaced apiaries dilute competition	-
	Proposes that pollen and nectar depletion from too many Apis increases forage range and	-
	time of native bees, which reduces the number and size of offspring, skews sex ratios as	
	males are smaller and increases parasitism. The papers cited as proof don't address the	
	effect of <i>Apis</i> on these factors.	
(Dohzono and Yokoyama 2010)	Bird-pollinated plants are not impacted by <i>Apis</i> as birds can pollinate in the presence of <i>Apis</i>	±
Peer reviewed	Bee-pollinated plants may be impacted	±
	Some studies have shown temporal or spatial resource partitioning but for most studies the	±
	underlying causes are unknown	
	Effects on native plant reproduction is likely if pollen is limited	-
(Donovan 1980)	Apis mainly forages on introduced plants	±
Peer reviewed	Native bees are dominant on native and some introduced plants	±
	Peak native bee activity occurs seasonally when forage is plentiful and thus competition is	±
	reduced	
	Habitat destruction, creation of nest sites and plant introductions have more impact than	±
	introduced bees	
(Douglas 1977)	Apis should be excluded from natural areas with 'viable' populations of native insects and	-
Opinion (no references) not peer reviewed	plants	
	Native insects commence foraging later in the day than Apis and thus there may be no	-
	forage available for them	
	Feral Apis are not a serious problem because their lives are hazardous (water, predation,	±
	food)	
	Apis becomes essential if native pollinators disappear	+

(Eickwort and Ginsberg 1980)	Apis influences foraging patterns of native bees through competition (correlational)	-
Peer reviewed	Most studies are inconclusive as competition is difficult to prove	±
(Geldman and González-Varo 2018)	Apis competes with wild pollinators (correlational)	-
Peer reviewed	Managed Apis should not be placed in protected areas	-
	Management plans should ensure that Apis do not spillover to surrounding areas once a	-
	crop has finished flowering	
(Gibbs and Muirhead 1998)	Effects on insect pollinators are absent or minor	±
Beekeeping Industry report not peer	If nectar is limiting, bird behaviour, pollination and seed set may be affected	-
reviewed	No adverse effects on birds and mammals when nectar is not limiting	±
	Bee sites are only used when nectar is abundant	±
	Sites are used infrequently for a short time	±
	No evidence that Apis increase plant hybridisation	±
(Goulson 2003)	Correlational evidence suggests Apis competes with native pollinators	-
Peer reviewed	Studies have not demonstrated long-term population reduction of native fauna, because it	±
	is difficult to do so rather than because there is no effect	
	Competition is unlikely when there is a nectar flow	±
	Native bees which forage on only one plant family are more likely to experience completion	-
	than generalists	
	Many weeds are visited by Apis	-
	Where native pollinators have declined due to habitat loss Apis provide pollination services	+
	to at least some native plants	
	Apis should not be placed in sensitive areas	-
(Hatfield et al. 2018)	Apis competes with native bees for resources	-
Not peer reviewed?	Few studies have addressed population effects on native bees	±
	Apis are inadequate pollinators for some plants	-
	Apis may increase the population of invasive weeds	-
(Hanley and Goulson 2003)	Non-native bee visitation increased seed set of introduced plants	±
Peer reviewed	There is a positive link between introduced bees and weed spread	-
(Hill 1982)	Apis deprives native animals of food	-
Not peer reviewed? Few references	Apis discourage native animals by aggressive and interference competition	-
	Apis fails to pollinate native plants	-
	Apis damages native plants	-
(Hung et al. 2018)	Apis does not differ in pollination effectiveness from the average floral visitor	±
--	---	---
	Apis was 75.6% as effective as the best floral visitor	-
	Apis is the most important pollinator	+
	5% of plant species are visited exclusively by Apis	+
	<i>Apis</i> may disrupt interactions between plants and pollinators even when they are only modestly abundant	-
(Mallinger et al. 2017) Peer reviewed	52% of studies on competition report negative effects, 25% report no effect and 23% mixed effects, but most are correlational	-
	39% of studies on plant communities reported positive, 34% reported negative, 7% no effect and 20% mixed effects	±
	Managed bees in their native range had lesser competitive effects	±
(Manning 1997)	There is no conclusive proof that Apis have a significant effect on wildlife	±
Peer reviewed?	Most studies are flawed	±
	Australian flora produce nectar in superabundance	±
	Long-term studies are needed	±
	Site use is sporadic and for short periods	±
(Matthews 1984)	Nectar is always limited	-
Magazine article not peer reviewed	Apis competes with native pollinators for resources (correlational)	-
	Apis may be inefficient pollinators of native plants or cause hybridization	-
	All evidence points to severe detrimental effects at all times	-
(Moller and Butz Huryn 1996)	No quantified evidence that New Zealand plants are affected	±
Department of Conservation report not	There are few potential effects of fauna	±
peer reviewed	There is no evidence that loss of Apis would limit weed populations	±
Viewed abstract only	There is no reason to further restrict beekeeping in conservation areas	±
(Moncur 2005)	Research on competition is inconclusive and poorly conducted	±
Beekeeping industry report, not peer	Presence of Apis reduces predation of native bees	+
reviewed	Beekeepers only work areas with surplus nectar	±
	Site usage is several weeks every 1-4 years	±
	Seasonal variation in resource availability leads to changes in native fauna abundance and distribution. Therefore, short-term studies do not reflect the broader context	±
(Moritz and Härtel 2005)	There is little evidence that <i>Apis</i> has any impact on native bee survival, fecundity or	±
Peer reviewed	population density	

	There are no reports of Apis causing extinction of other bees	±
(Paini 2004)	Resource overlap, changes in native bee visitation rates and resource collection are taken as	±
Peer reviewed	evidence for a likely impact of Apis on native bee population densities rather than	
	demonstrating this directly	
	Research to assess Apis competition with native bees has problems with sample size,	±
	confounding factors or data interpretation	
	68% of studies use 1-2 sites	±
	11% of studies were confounded	±
	32% of studies considered direct effects on native bees, too few to make definite	±
	conclusions	
	Vulnerable native bees may already have disappeared	-
(Paton 1993, 1996)	Apis remove a large proportion of nectar from a number of native Australian plants	-
Peer reviewed/ Report for Australian	Apis forage at lower temperatures and hence can start foraging earlier in the day and	-
Nature Conservation Agency	deplete resources before native bees commence foraging	
	Apis starts foraging after honeyeaters	±
	Apis alters the foraging behaviour of honeyeaters	±
	It is assumed that increased numbers of Apis will decrease the number of native fauna	±
	visiting a resource if there is competition. However, they may need to spend longer per	
	foraging trip to collect the same amount of resource. This would lead to native counts	
	increasing. A true impact would not be expressed until the next generation, if competition resulted in fewer offspring	
	<i>Apis</i> can perform pollination of native plants whose natural pollinators have declined or disappeared	+
	Research should first determine if resources are limiting, for this will affect the ability to detect competition	±
	Most experiments are poorly performed and poorly interpreted	±
(Paton 2000)	In some systems Apis has a negative effect, while in others they can be beneficial	±
Peer reviewed		
(Pyke 1990, 1999) Peer reviewed?	A precautionary principle should be adopted rather than an innocent until proven guilty approach	-
	Resource overlap constitutes competition (correlational) and results in reduced abundance of native fauna	-

	Excess resource production is evidence that <i>Apis</i> has disrupted plant-pollinator interactions,	-
	plants would evolve to produce only that which is necessary	
	Apis likely changes the abundance of many native plants and animals and may affect future	-
	evolution, this does not need to be, and cannot be, conclusively demonstrated	
	Research is never perfect and can be criticised by both sides	-
	Research cannot be completed on every system	±
	Scientific studies have established deleterious effect of Apis	-
	Reduction of the feral Apis population will improve conservation	-
	Sites where conservation gains from <i>Apis</i> removal should be located and there are likely	-
	sites that would not benefit appreciably from a reduction nor be adversely impacted by an	
	increase in the number of hives	
(Roubik 1988, 2009)	Africanized Apis has not negatively impacted either solitary or eusocial native bees	±
Unpublished/ Peer reviewed	Native bees compensate for competition by altering foraging time or the species they forage	±
	on	
(Russo 2016)	Many studies are inconclusive or contradictory	±
Peer reviewed	There is some empirical support for negative impacts	-
	Impact on native pollinators may be confounded with human disturbance	±
(Salvin 2015)	Apiaries are generally placed for a 2-4 month period coinciding with a peak in flowering	±
Rural Industries Research and Development	plants	
Corporation Report not peer reviewed	Sites are not profitable every year	±
	The impact of managed Apis in Australian ecosystems varies with time, place and research	±
	methods	
	It is unlikely that a consensus in favour of manged bees will be reached through future	-
	research	
	Areas where risks are minimal likely exist and can be identified, as with high risk areas that	±
	should be protected	
	A decision framework should help to identify these areas	±
(Schwarz and Hurst 1997)	Studies have been inconclusive as they are inadequately designed and floral resources were	±
Peer reviewed?	in abundance	
	Effects are likely greater on native bees with restricted forage range	±
(Seeman 1994)	Beekeepers use sites for 6 weeks on average but up to 3 months	±
Unpublished?	Competition is unlikely if resources are in excess	±

		1
	Australian fauna likely does not rely solely on any particular eucalypt due to their	±
	infrequency of flowering	
	Apis reduces available resources, if competition is persistent there are likely long-term	-
	effects	
	Apis are poor pollinators of some plants	-
	Commercial Apis are a source of new feral colonies	-
	Any inimical effects are temporary	±
(Stout and Morales 2009)	Most studies on resource overlap (correlational) found negative or neutral effects of	-
Peer reviewed	introduced bees on native bees	
	Mixed results on spatial correlations of native and invasive bees	±
	There is no indisputable evidence that alien bees have a substantial and consistent effect on	±
	native bees	
	Most indirect evidence shows that negative impacts might be strong	-
	Habitats rich in native flowering species should be protected	-
(Sugden et al. 1996)	Most or all studies are incomplete or flawed and cannot provide useful conclusions	±
Peer reviewed	Apis may impact bees under some circumstances	-
(Vergara 2008)	Mixed results of studies on pollination	±
Book	Some Australian plants may depend on Apis for full pollination due to declines in native	+
	pollinators from habitat loss and degradation	
	Effects of Apis on native pollinator population density are required to prove competition	±
(Wojcik et al. 2018a, Wojcik et al. 2018b)	Foraging patterns do not necessarily correlate with fitness outcomes	±
Peer reviewed	Without monitoring fitness or reproduction little can be inferred about competition	±
	Majority of studies have been performed in the absence of potential conflict and not in	±
	natural landscapes where Apis use is practiced or considered	
	9 of 19 studies showed no competition effect of <i>Apis</i> on native or wild bees, or had low	±
	power to detect an effect	
	10 of 19 studies showed exploitative competition	-
	6 of 7 studies with direct measures found negative fitness and reproductive outcomes in	-
	native bees in the presence of <i>Apis</i> . This number is too limited to provide confidence and	
	clarity for management decisions	
		1

AHBIC. 2005. Honey bees in Australian conserved forests. Policy document. Australian Honey Bee Industry Council, Sydney, Australia.

- Alaux, C., Y. Le Conte, and A. Decourtye. 2019. Pitting wild bees against managed honey bees in their native range, a losing strategy for the conservation of honey bee biodiversity. Frontiers in Ecology and Evolution **7**:60.
- Aslan, C. E., C. T. Liang, B. Galindo, K. Hill, and W. Topete. 2016. The role of honey bees as pollinators in natural areas. Natural Areas Journal **36**:478-488.
- Beard, C. 2015. Honeybees (*Apis mellifera*) on public conservation lands: a risk analysis. New Zealand Department of Conservation, Wellington, New Zealand.
- Butz Huryn, V. M. 1995. Use of native New Zealand plants by honey bees (*Apis mellifera* L.): a review. New Zealand Journal of Botany **33**:497-512. Butz Huryn, V. M. 1997. Ecological impacts of introduced honey bees. Quarterly Review of Biology **72**:275-297.
- Butz Huryn, V. M., and H. Moller. 1995. An assessment of the contribution of honey bees (*Apis mellifera*) to weed reproduction in New Zealand protected natural areas. New Zealand Journal of Ecology **19**:111-122.

Cane, J. H., and V. J. Tepedino. 2017. Gauging the effect of honey bee pollen collection on native bee communities. Conservation Letters **10**:205-210.

- Dohzono, I., and J. Yokoyama. 2010. Impacts of alien bees on native plant-pollinator relationships: a review with special emphasis on plant reproduction. Applied Entomology and Zoology **45**:37-47.
- Donovan, B. J. 1980. Interactions between native and introduced bees in New Zealand. New Zealand Journal of Ecology **3**:104-116.
- Douglas, A. M. 1977. Some inimical effects of the domestic bee on the native fauna and flora. Western Australian Naturalist **14**:1-2.
- Eickwort, G. C., and H. S. Ginsberg. 1980. Foraging and mating behavior in Apoidea. Annual Review of Entomology 25:421-446.

Geldman, J., and J. González-Varo. 2018. Conserving honey bees does not help wildlife. Science **359**:392-393.

Gibbs, D. M. H., and I. F. Muirhead. 1998. The economic value and environmental impact of the Australian beekeeping industry. Canberra, Australia. Goulson, D. 2003. Effects of introduced bees on native ecosystems. Annual Review of Ecology, Evolution and Systematics **34**:1-26.

Hanley, M. E., and D. Goulson. 2003. Introduced weeds pollinated by introduced bees: cause or effect? Weed Biology and Management **3**:204-212.

Hatfield, R., S. Jepsen, M. Vaughan, S. Black, and E. Lee-Mäder. 2018. An overview of the potential impacts of honey bees to native bees, plant communities, and ecosystems in wild landscapes: recommendations for land managers. Xerces Society for Invertebrate Conservation, Portland, OR, USA.

Hill, L. 1982. The effect of the honey bee on native plants and animals. Journal of the Canberra and South-East Region Environment Cetre **3**:6-7.

- Hung, K. L. J., J. M. Kingston, M. Albrecht, D. A. Holway, and J. R. Kohn. 2018. The worldwide importance of honey bees as pollinators in natural habitats. Proceedings of the Royal Society of London B **285**:20172140.
- Keith, D. G., and J. L. Briggs. 1987. Honey bees in Australian conserved forests. Federal Council of Australian Apiarists' Associations, Australia.

Mallinger, R. E., H. R. Gaines-Day, and C. Gratton. 2017. Do managed bees have negative effects on wild bees? A systematic review of the literature. PLoS One **12**:e0189268.

- Manning, R. 1997. The honey bee debate: a critique of scientific studies of honey bees *Apis mellifera* and their alleged impact on Australian wildlife. Victorian Naturalist **114**:13-22.
- Matthews, E. 1984. To bee or not? Bees in national parks the introduced honeybee in conservation parks in South Australia. South Australia National Parks Association:9-14.
- Moller, H., and V. M. Butz Huryn. 1996. Beekeeping and conservation values of protected natural areas. A contract report (Project 853) for the Department of Conservation. University of Otago, Dunedin, New Zealand.
- Moncur, M. W. 2005. Do current commercial beekeeping practices threaten Australian fauna and flora? A report to the Australian Honey Bee Industry Council. Canberra, Austrlia.
- Moritz, R. F. A., and S. Härtel. 2005. Global invasions of the western honeybee (*Apis mellifera*) and the consequences for biodiversity. Ecoscience **12**:289-301.
- Paini, D. R. 2004. Impact of the introduced honey bee (*Apis mellifera*) (Hymenoptera: Apidae) on native bees: a review. Austral Ecology **29**:399-407. Paton, D. C. 1993. Honeybees in the Australian environment. BioScience **43**:95-103.
- Paton, D. C. 1996. Overview of feral and managed honeybees in Australia: distribution, abundance, extent of interactions with native biota, evidence of impacts and future research. Department of Zoology, University of Adelaide, Canberra, Australia.
- Paton, D. C. 2000. Disruption of bird-plant pollination systems in Southern Australia. Conservation Biology 14:1232-1234.
- Pyke, G. H. 1990. Apiarists versus scientists: a bittersweet case. Australian Natural History 23:386-392.
- Pyke, G. H. 1999. The introduced honeybee *Apis mellifera* and the precautionary principle: reducing the conflict. Australian Zoologist **31**:181-186. Roubik, D. W. 1988. An overview of Africanized honey bee populations: reproduction, diet and competition. Pages 45-54 *in* G. R. Needham, R. E.
- Page, M. Delfinado-Baker, and C. E. Bowman, editors. Africanized Honey Bees and Bee Mites. Ellis Norwood Limited, Chichester, England. Roubik, D. W. 2009. Ecological impact on native bees by the invasive Africanized honey bee. Acta Biológica Colombiana **14**:115-124.
- Russo, L. 2016. Positive and negative impacts of non-native bee species around the world. Insects **7**:69.
- Salvin, S. 2015. Compatibility of management objectives on public lands with beekeeping. Canberra, Australia.
- Schwarz, M. P., and P. S. Hurst. 1997. Effects of introduced honey bees on Australia's native bee fauna. Victorian Naturalist **114**:9-11.
- Seeman, O. 1994. The impact of managed honey bees on native Australian animals and plants. University of Queensland, Brisbane, Queensland, Australia.
- Stout, J. C., and C. L. Morales. 2009. Ecological impacts of invasive alien species on bees. Apidologie **40**:388-409.
- Sugden, E. A., R. W. Thorp, and S. L. Buchmann. 1996. Honey bee native bee competition: focal point for environmental change and apicultural response in Australia. Bee World **77**:26-44.
- Vergara, C. H. 2008. Environmental impact of exotic bees introduced for crop pollination. Pages 145-165 *in* R. James and R. L. Pitts-Singer, editors. Bee Pollination in Agricultural Ecosystems. Oxford University Press, New York, USA.
- Wojcik, V., L. A. Morandin, L. D. Adamas, and K. E. Rourke. 2018a. Floral resource competition between honey bees and wild bees: is there clear evidence and can we guide managment and conservation? Pollinator Ecology and Management **47**:822-833.

Wojcik, V., L. Smith, W. Carromero, L. D. Adams, S. Davis, S. J. DeBano, C. Fallon, R. Hatfield, S. H. Black, T. Kaye, S. Jepsen, S. McKnight, L. Morandin, E. Pelton, P. Rhoades, K. Rourke, M. Rowland, and W. Tinkham. 2018b. New research and BMPs in natural areas: a synthesis of the pollinator management symposium for the 44th Natural Areas Conference, October 2017. Natural Areas Journal 38:334-346.

Reference	Country/ecosystem		Conclusions	1	Strength
Australia - Introdu	iced				
(Bailey 1994) * description from Paton 1996	Western Australia	Counted visits of insects to 1 bush of <i>Leucopogon</i> <i>propinquus</i> for three days when <i>Apis</i> had access and three days when they were removed (from flowers)	Number of visits by two native bees and a Diptera increased on days that <i>Apis</i> were removed	-	Weak - correlational
(Bernhardt 1987)	Victoria	Collected insects on 8 species of <i>Acacia</i> at 9 sites and identified pollen	21-91% of bees carried pollen of 2 or more plants, <i>Apis</i> among them	-	Adequate
(Bernhardt and Walker 1985)	Grampian Mountains, Victoria	Collected insects on Acacia retinodes and identified pollen	82% of bees carried pollen of at least 1 sympatric plant, <i>Apis</i> among them	-	Adequate
(Bernhardt and Weston 1996)	New South Wales and Victoria	Collected insects on <i>Persoonia</i> at 17 sites and identified pollen	28% of bees carried pollen from more than 1 <i>Persoonia</i> spp. At 2 sites, <i>Apis</i> among them	-	Adequate
(Bond and Brown 1979)	Wyperfeld National Park, Victoria - sand dune adjacent to a flood plain	Measured daily nectar availability and concentration of <i>Eucalyptus</i> <i>incrassate</i> using exclusion experiments and recorded floral visits at 1 site in 1 year	Apis forage later than honeyeaters, when nectar production has dropped Apis cannot access young flowers Honeyeaters harvest most of the nectar	± ± ±	Adequate - there could be variation between sites or years due to variation in resource availability. Does not demonstrate a population demographic effect
(Celebrezze and Paton 2004)	Cox Scrub Conservation Park, South Australia - woodland	Recorded visits, fruit set and seed production in native <i>Brachyloma ericoides</i> in three treatments: exclusion of birds and <i>Apis</i> , exclusion of birds only and no exclusion at 4 sites	Exclusion of birds reduced fruit set and seed production Outcomes still low under no exclusion, authors suggest that this is because <i>Apis</i> deplete pollen	-	Weak - cause of poor fruit set and seed production not adequately examined. Amount of pollen removed by <i>Apis</i> not examined, nor the number of pollen

Table 2: Research papers that examine the effect of Apis mellifera on flora and fauna and the strength of the conclusions based on the methods used

			Apis flew between plants 2x as much	±	grains required for
			as birds, but when birds changed		adequate pollination
			plants they move further		
(Collins et al.	Wongamine	Nectar availability and	Honeyeaters remove significant	±	Weak to adequate -
1984)	Nature Reserve,	foraging activity on	resources before Apis commence		presence/absence, there
	Western Australia -	Calothamnus quadrifidus	foraging		could be variation between
	heathland	was measured through the	Apis contacted anthers or stigmata	+	sites or years due to
		day. 1 site, 1 season	on 42% of nectar-foraging visits		variation in resource
			Apis moved between bushes more	+	availability
			frequently than honeyeaters		
(England et al.	Jervis Bay, New	Compared outcrossing in	90% of pollen was removed from	-	Adequate -
2001)	South Wales -	flowers where birds and	bird and mammal-excluded		presence/absence, seed
	woodland	mammals were excluded or	inflorescences (unpublished data)		set was low and difference,
		not excluded from self-	Less pollen is transferred to stigmas	-	if any, between Apis and
		compatible Grevillea	when birds and mammal are		bird pollinated flowers was
		<i>macleayana</i> at 3 sites	excluded		not reported on
			Outcrossing is lower when birds and	-	
			mammals are excluded		
			Outcrossing was low across all 3	-	
			sites, whereas sites had previous		
			varied		
			Apis was observed nectar robbing	-	
(Goulson and	Queensland	Insect visitation and fruit set	Apis performed 63% of visits	±	Weak - Apis contribution to
Derwent 2004)		of an invasive weed <i>Lantana</i>	Seed set was positively correlated	-	pollination was not
		camara were recorded on	with Apis abundance at sites		measured directly but by
		400 inflorescences at each			correlation with the
		of 63 sites along a 2000km			number of Apis counted on
		transect. The transect was			400 inflorescences at sites
		completed twice to try to			
		control for latitude and			
		season			

(Goulson and	Tasmania	Estimated population size,	Apis were absent from most sites	±	Weak - see Stout et al 2002
Rotheray 2012)		insect visitation and seed set	Seed set was not correlated with	±	
		of an invasive weed Lupinus	visitation rates		
		arboreus, comparing results			
		of this study (2010) with a			
		those of another (Stout et al			
		2002) in 1999			
(Goulson et al.	Tasmania wide	Compared floral visitations	Native bees were >3 times more	-	Weak - correlational, short
2002)		between sites with and	abundant at sites that Apis were		duration
		without Apis and Bombus.	absent from		
		10 garden and park sites, 32	Flower-visiting insects were more	±	
		pasture, weeds and	abundant at sites where Apis were		
		waysides sites and 25 native	abundant		
		scrub or forest sites over 2	No difference in species richness	±	
		months	between sites with and without Apis		
			and <i>Bombus</i>		
			Apis preferred introduce plants	±	
			There is niche overlap	±	
(Gross 2001)	Northern	Examined effect of Apis	Native bee presence is negatively	-	Weak to robust -
	Tablelands, New	presence on a native legume	correlated with Apis		correlational, fruit set
	South Wales -	Dillwynia juniperina by	There was no difference in fruit set	±	component robust
	fragmented	recording visits at 2 sites for	between native bee (25%) and Apis		
	woodland	3 years. Fruit set was	(14.5%) pollination		
		determined after single	Apis may be necessary to augment	+	
		visits by Apis and native	pollination at some sites at some		
		bees (<i>Leioproctus</i> spp.).	times		
		Pollen limitation was tested	Flowers were not pollen limited	±	
		by hand pollination			
(Gross 1993,	Mount Spec,	Examined the number of	Apis deposits less pollen on stigmas	-	Adequate
Gross and	Queensland -	pollen grains deposited and	and removes more pollen from		
Mackay 1998)	disturbed area	pollination success of the	stigmas than native bees		
	adjacent to	pioneer shrub <i>Melastoma</i>			

			E. Tradicio de la contracto de		
	montane tropical	affine (36 plants) after single	Fruit set and seed set were lower in	-	
	rainforest	visits of Apis versus 4 native	plants that were visited last by Apis		
		bee species and interactions	than by native bees		
		between Apis and native	Apis is more likely to be the last	-	
		bees. Not all species were	visitor		
		used in all experiments.	Native bees were more abundant	±	
			most of the time		
			Native bees were disturbed from	-	
			foraging by Apis		
			Suggest that pollen limitation caused	-	
			by Apis increases native bee		
			visitation		
			Apis should not be allowed in	-	
			montane rainforest		
(Heard 1994)	Australia -	Compared fruit set between	Most Apis forage for nectar while	±	Adequate
	macadamia	caged and non-caged	stingless bees foraged for pollen		
	orchards (native)	flowers, native stingless	Nectar foraging Apis still contact the	+	
		bees could enter the cage	stylar		
		but not Apis. 10 orchards,	There was no difference in nut set	±	
		one site was visited 8 times	between Apis excluded and non-		
		and the others once.	excluded treatments		
(Hermansen et	Georges River and	Observed floral visitors to a	38 floral visitors were identified	±	Weak to adequate - native
al. 2014)	Kiama Downs, New	native mangrove Avicennia	Apis was the most common visitor	±	pollinators loss could be
	South Wales -	marina at 2 sites for 3	Only Apis performed significant	+	due to other factors than
	temperate	months for 3 years. The	pollination, only one beetle and one		Apis, such as nesting
	estuaries	proportion of pollen	ant species carried pollen		habitat loss. Contribution
		removed and deposited by	Apis remove 96% of pollen from A.	±	of Apis to fruit or seed set
		Apis in a single visit was	<i>marina</i> in a single visit		was not determined.
		determined. Foraging	Apis carried 89-95% A. marina pollen	±	
		fidelity of <i>Apis</i> was	Apis carried 88-94% A. corniculatum	±	
		determined by identification	pollen		
		of pollen from 60 bees on A.			

(Hingston et al. 2004b)	Derwent Estuary, Tasmania	marina, 30 on Sarcocornia quinqueflora and 40 on Aegiceras corniculatum. Measured number of capsules and seeds produced by 4 trees of Eucalyptus globulus after single visits of Apis, other insects and the swift parrot Lathamus discolor	Apis carried 99% S. quinqueflora pollen Apis has displaced one or more native pollinators Only single visits of Apis, Bombus terrestris and L. discolor resulted in seed production Fewer seeds were produced per flower when pollinated by Apis than by L. discolour	+ - + -	Weak to adequate - the parrots were caged, thus estimates of their effectiveness may not be accurate
(Hingston et al. 2004a)	Derwent Estuary, Tasmania	Flowers of <i>Eucalyptus</i> <i>globulus</i> within 5m of the ground were placed in cages of varying apertures and floral visitors and seed production were recorded on 12 trees. Nectar consumption was measured the following year at a different site, as trees at the original sites did not flower that year	<i>Apis</i> are inefficient pollinators of <i>Eucalytpus globulus</i> <i>Apis</i> may displace birds from flowers <i>Apis</i> consume most of the nectar within 5m of the ground	-	Weak - pollen was removed from <i>Apis</i> while trying to exit the mesh and thus pollination efficiency is poorly estimated. Birds seldom foraged on experimental branches, making estimates of pollination efficiency of open and caged inflorescences inaccurate. Amount of nectar consumed by <i>Apis</i> was not measured, but since few other visitors were recorded it can be assumed that they consumed most of the nectar
(Horskins and	Wyperfeld National	Floral visitors and nectar	Apis commenced foraging, mainly	±	Weak to adequate - results
Turner 1999)	Park, Victoria	availability were recorded at	for pollen, prior to native bees		may differ under resource

		3 times of day on 9 days	Nectar supplies remained at midday	±	limitation and between
		over 4 weeks on <i>Eucalyptus</i>	Pollen covered Apis contacted	+	sites and years,
		<i>costata</i> at 1 site	receptive stigmata		presence/absence
			The insect community differed from	±	
			a study conducted in 1979		
(House 1989)	Atherton	Visitors to native Neolitsea	Apis foraging may be restricted to a	-	Weak to adequate -
	Tableland,	dealbata and Diospyros	single tree or gender of tree in <i>N</i> .		pollination effectiveness
	Queensland	pentamera were captured	dealbata. If they do move between		not measured
		using sticky traps and their	tree genders they are expected to		
		pollen loads identified and	pollinate efficiently as they would		
		measured. Number of sites	likely contact the stigmas		
		not recorded	Apis are unlikely to pollinate D.	-	
			pentamera as they are only partially		
			in contact		
			Only 8% of individuals carried pollen	±	
			of a single species, Apis among them		
(Lomov et al.	Cumberland Plain,	Observed floral visitors to a	Apis are less likely to change plants	-	Adequate
2010)	New South Wales -	perennial native shrub	than 2 native bee pollinators		
	revegetated	<i>Dillwynia sieberi</i> in remnant	Apis were the sole pollinator in	+	
	pasture and	woodland (2 sites) and	winter		
	remnant	surrounding land			
	endangered	undergoing restoration (2			
	eucalypt woodland	sites) once per month for 4			
	Introduced	months in year 1 and 6			
		months in year 2			
(Mallick and	Waratah and	Floral visitors to Eucryphia	Apis visits were 3 times as high at	±	Weak to adequate - some
Driessen 2009)	Queenstown,	lucida were recorded at	apiary sites		aspects correlational. Black
	Tasmania	apiary sites (7) and control	Few feral Apis were observed at	±	bees were assumed to be
		sites (6) which were at least	apiary sites		feral and yellow bees
		2km from the nearest apiary	Presence of apiaries did not affect	±	assumed to have come
		for 1 month of two non-	visits by native insects		from apiaries.
		consecutive years. Nectar			Observations were

		production and	No difference in pollen deposition or	±	restricted to within 2m of
		consumption and seed set,	seed set in apiary and control sites		ground level. Large
		fruit set and fruit weight	Fruit set tended to be higher at	+	variation in native insect
		were measured. Apiaries	apiary sites		abundance between sites
		had 50-120 hives	Nectar was depleted at apiary sites	±	may affect results
			Control sites had 50% nectar	±	
			remaining		
			No competitive effects detected	±	
(Moncur et al.		Seed set was compared in	Placing Apis in Eucalyptus globulus	+	Weak - seed set could vary
1993, not peer		Eucalypts between years	seed production areas increased		between years for
reviewed,		with and without Apis	seed quality and quantity		numerous reasons
Moncur et al.			Outcrossing of E. globulus was	±	
1995) *Moncur			unaffected		
et al. (1993) not			E. nitens seed production was	±	
available			unaffected		
			E. nitens outcrossing was increased	+	
			E. camaldulensis increased seed	+	
			production		
			E. camaldulensis outcrossing was	+	
			increased		
(Paini and	Northern	Compared fecundity of a	Pollen resource overlap varied	±	Adequate to robust -
Roberts 2005)	Beekeepers Nature	native solitary bee Hyleus	between 0.52-0.97		correlational resource
	Reserve, Western	alcyoneus in trap nests at 7	H. alcyoneus only collected pollen	±	overlap backed up with
	Australia - low	control and 7 apiary sites	from one plant species whether Apis		population reproductive
	heath	(100 colonies) over 2 years.	were present or not		measurements. Power was
		Determined resource	There were 23% less <i>H. alcyoneus</i>	-	low for many analyses.
		overlap by sampling pollen	nests at apiary sites, mainly driven		Apiary sites were not
		from native bee nests,	by data collected in the first year		populated simultaneously
		honey from Apis nests and	There was no difference in <i>H</i> .	±	and were considered to be
		using pollen traps on Apis	alcyoneus egg production between		control sites until they
		nests. Sites were at least	treatment and control sites		were populated. It is
		1.5km apart			unclear how many

(Paini et al. 2005)	Northern Beekeepers Nature Reserve, Western Australia - Iow heath	Assessed trap nest occupation and number and weight of offspring produced by <i>Megachile</i> sp. 323 at 11 sites over 3 months. 2 <i>Apis</i> colonies	There was no difference in male or female <i>H. alcyoneus</i> mass between treatment and control sites Niche overlap was 0.74 Sex ratio of the native bee species unchanged There was no difference in reproductive success between treatment and control sites	± ± ±	treatment sites there were at any given time and how this effects results, particularly in the first year Adequate - commercial colonies are usually not placed during this period due to low resource availability. <i>Apis</i> colonies did not produce honey in
		were introduced to 5/11 sites after 3 months and remained for 3 months. Resource overlap was assessed by collecting pollen from honey from 1 native bee colony per site and from pollen traps on <i>Apis</i> colonies			the final 8 weeks.
(Paton 1993)	Scott Conservation Park, South Australia for <i>Callistemon</i> <i>rugulasus</i> and Flinders Chase National Park, South Australia for <i>Correa reflexa</i>	Observed floral visitors to <i>Callistemon rugulosus</i> and compared territory size of honeyeaters before and after introducing 10 <i>Apis</i> hives. Compared fruit production on inflorescences that birds were and were not excluded from.	Honeyeaters made fewer visits per flower and changed behaviour to visit inflorescences within the canopy more frequently when <i>Apis</i> were foraging Honeyeaters increased their territory size with increasing <i>Apis</i> abundance When <i>Apis</i> were infrequent honeyeaters foraged throughout the day, when <i>Apis</i> were abundant honeyeaters foraged more intensively early in the morning	-	Weak to adequate - 1 site, territory size was based on only 5 hours of observations on 5 birds at a control site and 5 at a treatment site. Not a realistic apiary size. Contribution of <i>Apis</i> to pollination was not quantified

				1
			-	
		struck the stigma of C. rugulosus,		
		and 16.7% of pollen-foraging Apis		
		There was a positive correlation	-	
		between number of Apis visits and		
		fruit production in flowers that birds		
		were excluded from but lower than		
		that of uncaged flowers of C.		
		rugulosus		
		Fruit set and pods per fruit are	-	
		higher for open than bird-excluded		
		Correa reflexa		
		Orthrosantus multiflorus flower for	+	
		one day and Apis provide significant		
		pollination		
Ngarkat	Introduced Apis colonies	There was much variation in nectar	±	Weak to adequate -
Conservation Park,	(40-100) to some sites and	production and fauna abundance		abundance is correlational,
South Australia -	not others in an areas where	between years and sites		Apis contribution to seed
heathland	there had previously been	Sites on transects close to apiaries	-	production not quantified
	no commercial use and few	(100-300m) had less nectar than		directly. Highlights the
	feral Apis. 5/15 sites were	sites further from an apiary and		variation between years
	stocked in the 1990, 5/15	control sites		and how important long-
	sites were stocked in 1992	In one year nectar was significantly	-	term studies are.
	and 9/14 in 1993. No sites	reduced at sites 1km from an apiary		
	received colonies in 1994.	versus no apiary		
	Measured flower-visiting	Pollen quantity was lower at sites	-	
	fauna populations,	with Apis		
	documented floral resources	Pollen and nectar availability	±	
	and seed production of	declined in presence of Apis, but was		
	Banksia ornata in sites with	in excess (some left at end of day)		
	and without Apis along			
	transects. Sites (29) were			
	Conservation Park, South Australia -	Conservation Park, South Australia - heathland (40-100) to some sites and not others in an areas where there had previously been no commercial use and few feral <i>Apis</i> . 5/15 sites were stocked in the 1990, 5/15 sites were stocked in 1992 and 9/14 in 1993. No sites received colonies in 1994. Measured flower-visiting fauna populations, documented floral resources and seed production of <i>Banksia ornata</i> in sites with and without <i>Apis</i> along	Ngarkat Conservation Park, South Australia - heathlandIntroduced Apis colonies (40-100) to some sites and no tothers in an areas where there had previously been no commercial use and feur 1990, 5/15 sites were stocked in 1992, and 9/14 in 1993. No sites received colonies in 1994. Measured flower-visiting fauna populations, documented floral resources and without Apis alongThere was a positive correlation between number of Apis visits and fruit production in flowers that birds were excluded from but lower than that of uncaged flowers of C. <i>rugulosus</i> Fruit set and pods per fruit are higher for open than bird-excluded Correa reflexa Orthrosantus multiflorus flower for one day and Apis provide significant pollinationNgarkat Conservation Park, South Australia - heathlandIntroduced Apis colonies (40-100) to some sites and no tothers in an areas where there had previously been no commercial use and few feral Apis. 5/15 sites were stocked in the 1990, 5/15 sites were stocked in 1992 and 9/14 in 1993. No sites received colonies in 1994. Measured flower-visiting fauna populations, documented floral resources and seed production of Banksia ormata in sites with and without Apis alongThere was a positive correlation between vasis (some left at end of day) ant excess (some left at end of day)	NgarkatIntroduced Apis colonies (40-100) to some sites and not others in an areas where theathlandIntroduced Apis colonies (100-300m) had less nectar than sites were stocked in the 1990, 5/15 sites were stocked in the 1990, 5/15 sites were stocked in 1992.Introduced Apis sources and few there had previously been no commercial use and few feral Apis. 5/15 sites were stocked in the 1990, 5/15Struck the stigma of C. rugulosus, and 16.7% of pollen-foraging Apis There was a positive correlation between number of Apis visits and fruit production in flowers that birds were excluded from but lower than that of uncaged flowers of C. rugulosus Fruit set and pods per fruit are higher for open than bird-excluded Correa reflexa Orthrosantus multiflorus flower for one day and Apis provide significant pollination+Ngarkat Conservation Park, South Australia- heathlandIntroduced Apis colonies (40-100) to some sites and not others in an areas where there had previously been no commercial use and few feral Apis. 5/15 sites were sites were stocked in 1992 and 9/14 in 1993. No sites received colonies in 1994. Measured flower-visiting fauna populations, documented floral resources and seed production of Banksia ornata in sites with and without Apis along-±±

[
		variously affected by fire,	No difference in honeyeater	±	
		drought and loss of access	abundance between sites with or		
		and therefore were not used	without Apis		
		in all 4 years	No difference in small mammal	±	
			abundance between sites with or		
			without <i>Apis</i>		
			No difference in abundance of	±	
			native bees at sites with and without		
			Apis		
			No difference in abundance of	±	
			native ants at sites with and without		
			Apis		
			Increased seed production in areas	±	
			with Apis in most years		
			No detrimental effect of Apis on	±	
			flora and fauna		
(Paton 2008, not	Mt Lofty region,	Measured nectar	Flora produced excess nectar	±	Weak to adequate -
peer reviewed)	South Australia	throughout the day and	Apis are unlikely to be affecting the	±	resources may not always
		counted floral visitors to 18	ability of native fauna to harvest		be in excess. Didn't
		plant species at 6 sites,	nectar		consider night pollinators
		often at multiple			
		months/years			
(Pyke and Balzer	8 parks in New	Compared native bee	More native bees foraged when Apis	-	Weak - correlational,
1985)	South Wales	abundances over 10 minutes	were removed		contradictory results. Apis
		at sites where Apis foragers	Apis density was highest close to the	±	visits were similar at
		were and were not	apiary		experimental and control
		removed. Counted the	Native bee densities on transects	-	plots, indicating that
		number of <i>Apis</i> and native	were higher close to the apiary,		treatment was not
		bees arriving at a resource	however they declined from that		effective. Removing Apis
		at different distances from	seen before Apis was introduced		during a 10-minute period
		an apiary. Counted the	No relationship between Apis and	±	does not seem an effective
		number of native bees along	native bee abundance on flowers		

		transects and at census plots before and after introducing 30 <i>Apis</i> hives			way of reducing density or to effect nectar availability. Foraging range is a factor of resource availability and weather conditions. Sampling protocols poorly described
(Ramsey 1988)	Perth, Western Australia - open woodland	Visitation rates and foraging behaviour of birds, beetles and <i>Apis</i> were recorded in <i>Banksia menziesii</i> and contrasted with fruit set at 1 site over 3 days. Pollen removal was assessed on 3 caged (no birds), 3 bagged (no birds or <i>Apis</i>) and 6 open inflorescences. Pollen deposition was assessed on 10 inflorescences for each treatment. Fruit set was measured on 15 inflorescences per treatment. Effect of cages on <i>Apis</i> foraging was	38% of open inflorescences received adequate pollen, while only 9% of cages inflorescences did Fruit set was 87% on open inflorescences and 40% on caged inflorescences Pollen deposition by <i>Apis</i> exceeded that required for fruit set - therefore factors other than pollen deposition limit fruit set There was no difference in number or length of <i>Apis</i> visits to caged and uncaged inflorescences <i>Apis</i> do not affect reproductive success, but they may indirectly if they alter the foraging behaviour of honeyeaters	- - ±	Weak - the low sample size may have precluded the ability to detect differences in behaviour of <i>Apis</i> foraging in cages versus open inflorescences. Beetles remove a significant amount of pollen and likely have a greater effect than <i>Apis</i>
		assessed using 3 caged and 3 open inflorescences.			
(Schwarz et al. 1991) *Source not available, description taken from Paini (2004) and	Australia	Compared brood mass and number and number of adults in colonies of <i>Exoneura bicolor</i> and <i>E.</i> <i>nigrihirta</i> in the presence (6	No effect of <i>Apis</i> on any measure of <i>Exoneura</i> reproduction <i>Exoneura</i> colonies had higher survival at sites with <i>Apis</i>	± +	Adequate

Schwarz & Hurst		or 100 colonies; 4 sites) and			
(1997)		absence (4 sites) of Apis			
(Simpson et al. 2005)	Barrington Tops, New South Wales	Observed floral visitor on invasive broom <i>Cytisus</i> <i>scoparius</i> at 3 sites. Determined fruit set and	84% of <i>Apis</i> visits result in fruit set compared to 35% of flowers that were left open (not all open flowers get visited)	-	Robust
		seed production after a single <i>Apis</i> visit	The number of seeds per fruit did not differ between those that had a single <i>Apis</i> visit and those that were left open	±	
			Native bee visits outnumbered <i>Apis,</i> but they did not pollinate	±	
(Spessa 1999, thesis) *only abstract available	Australian Capital Territory	Compared pupal weights, survival and frequency of <i>Amphylaeus morosus</i> nests with adult females of a	There was overlap in resource use No impact of <i>Apis</i> pupal weight, number of brood, brood survival or colony size	± -	Adequate
		native bee at 4 sites with 6 <i>Apis</i> colonies or 4 sites with no colonies over two years	In one year there were more new nests in the presence of <i>Apis</i>	+	
(Stout et al. 2002)	Tasmania	Observed insect visits to an invasive weed <i>Lupinus</i> <i>arboreus</i> and determined seed set at 20 sites with a range in density of <i>Bombus</i>	No relationship between <i>Apis</i> visits and seed set. When sites dominated by <i>Bombus</i> were excluded there was a positive correlation Insect visitation is necessary for pollination	-	Weak - correlational, seed set relationships were determined indirectly, by correlating the proportion of flowers setting at each site against the number of
			Native insects are unlikely to perform pollination	±	bees per flower and the proportion of flowers visited. There were 3 sites without <i>Bombus</i> , far removed from the rest of the sites.

(Sugden and	Nadgee Nature	Measured the number and	Reproductive output was higher at	+	Weak - no replication,
Pyke 1991)	Reserve, New	reproductive output of	the experimental site in year 1		sampling period differed
	South Wales -	native bee <i>Exoneura</i>	More colonies were established near	+	between experimental and
	grass-tree plains	asimillima colonies at 1	the experimental site in year 2		control sites by 2 weeks in
		experimental and 3 control	Survival of colonies was similar	±	year 1. Differences in
		sites over 2 years. The 3	between control and treatment sites		number of adults could be
		control sites were 7-8km	There were fewer adults at colonies	±	from dispersal. Variability
		from the control site. The	in the experimental site in year 2		between sites could
		experimental site had 0-29	Concludes there is a negative effect	-	explain results. Conclusion
		hives.	of Apis		of negative effects based
					on a lack of any negative
					results
(Taylor and	Bargo, New South	Observed Apis foraging on	Apis transferred little pollen to	-	Weak - small sample size
Wheland 1994)	Wales - Eucalypt	500 Grevillea x gaudichaudii	stigmas		and short observation
	woodland	flowers for 2 hours over 2	No Apis carried Grevillea pollen on	-	period, deterrence of
		days. Examined 10 Apis for	their body (the only way likely to		honeyeaters not described
		pollen grains	affect pollination)		
			Apis returning to the hive carried	±	
			only one type of pollen in their		
			corbicula, which was not Grevillea		
			High abundance of Apis deterred	-	
			honeyeaters (unpublished and		
			undescribed data)		
(Vaughton 1992)	New England	Observed visitors to Banksia	Apis only visited on warmer days	±	Weak - cannot
	National Park -	<i>spinulosa</i> for 9-18 days in	late in the flowering period, past		differentiate seasonal
	New South Wales -	each of 3 years over 5	peak flowering		effects from effects of
	dry sclerophyll	months, with exclusion	Pollination was higher in the late	±	increased Apis abundance,
	forest	experiments	period (64-73%) than the earlier		effect of single visits on
			period (22-27%)		pollination not examined
			38% of bird-excluded flowers were	-	
			pollinated, less than that of open		
			flowers, during the late season		

			Fruit set did not differ between open	±	
			and bird-excluded flowers during the		
			late period		
			Apis represented 90% of insect	±	
			visitors, with other insects not		
			providing pollination		
			Only pollen-foraging Apis (35%)	-	
			contact the stigma		
(Vaughton 1996)	Jervis Bay, New	Observed floral visitors to	Bird-excluded flowers had 50% less	-	Adequate - effect of single
	South Wales -	Grevillea macleayana with	fruit set than open flowers		visits on pollination not
	heathland	exclusion experiments at 1	Bird and Apis-excluded flowers had	-	examined
		site	higher fruit set than open flowers		
			suggesting that Apis prevented self-		
			pollination through pollen removal		
			Only pollen-foraging (79%) Apis	-	
			contact pollen presenters		
			Approximately 30% of pollen	-	
			removal is attributed to Apis		
(Whelan et al.	Jervis Bay, New	Compared visitor	Apis were the most frequent visitors	±	Weak to adequate - the
2009)	South Wales -	frequencies and movement	Pollen was removed equally from	-	more outcrossed site was
	disturbed shrubby	patterns to Grevillea	open and bird-excluded flowers,		of better quality
	heathland and a	macleayana at 3 sites over 2	suggesting Apis remove most of the		(woodland, larger
	woodland	years (6 days in spring, 6 in	pollen		population, larger plants),
		winter) with exclusion	Fewer pollen grains were deposited	-	correlational, effect of
		experiments	on stigmas of bird-excluded flowers		single visits on pollination
			Birds were more frequent visitors at	-	not examined
			a more highly outcrossed site,		
			moving further between plants and		
			visiting fewer inflorescences per		
			plant		
			Apis contacted the stigmatic region	-	
			on 4.4-20.5% of visits		

(Williams and	Manning Valley,	Recorded bee visits to mass-	Apis foraged on most sampled plant	±	Weak to adequate -
Adam 1997)	New South Wales -	flowering rainforest trees at	species		correlational,
	lowland	9 sites	Apis was common at all sites	±	presence/absence
	subtropical		Apis disturbed small native Hylaeine	-	
	rainforest		bees		
	remnants		No interaction, displacement or	±	
			avoidance of Trigona by Apis		
(Wills et al.	Northern	Apis and other pollinator	Apis visited 30% of the 413 plant	±	Weak - correlational
1990)	Sandplain, Western	visits were recorded along	species identified		
	Australia -	transects of 90 sites in a	Apis favoured species that were	±	
	shrubland	beekeeping reserve over 30	widespread and/or locally abundant		
		months. Flowering species	70% of the species used by Apis	±	
		were recorded, along with	were also used by native bees		
		fire history and regeneration	Resource overlap indicates potential	-	
		mode after fire (reseeding or	resource competition		
		sprouting)	Post-fire reseeding species are of	±	
			major importance to Apis and native		
			bees		
			Increased fire frequency may be	±	
			leading to lower abundance of post-		
			fire reseeding species		
			If Apis sub-optimally pollinate these	-	
			species than these effects may be		
			compounded		
			Apis can play a role in conservation	+	
			More research is needed on the		
			efficacy of Apis pollination of native		
			plant species		
New Zealand - Int	roduced				
(Beavon and	New Zealand -	Observed visits to an	Floral visitors were almost	-	Adequate - relative
Kelly 2012)	broadleaved	invasive vine Passiflora	exclusively Apis and Bombus. Native		contribution of Apis and
	vegetation, gorse,	tripartite. Compared fruit-	bees were observed twice. Damage		Bombus could be

	scrubby mid-	set in bagged and unbagged	indicated flowers were robbed by		determined by bagging
	successional trees	flowers. 2 sites	birds and mammals		flowers after their visit
			Fruit-set was increased when	-	
			flowers were left open to receive		
			visitors		
(Bennik 2009)	New Zealand -	Recorded visits to manuka	Diptera abundance was negatively	-	Weak to adequate -
Thesis	manuka	plants at 18 study sites.	correlated with Apis abundance		correlational, nature of
		Exclusion experiments were	There was no correlation with any	±	aggression was not
		conducted at 4 sites to	other pollinators		described or quantified
		determine capsule and seed	Apis were the strongest factor	-	
		set. Pollen limitation was	influencing guild abundance		
		tested through hand	There were some instances of	-	
		pollination. Nectar was	aggression from Apis toward large		
		limited, but not pollen	Diptera		
			Capsule and seed set was unaffected	±	
(Howell and	New Zealand	Floral visits by birds and	Bees (Apis and Bombus) are	-	Adequate
Jesson 2013)		bees (Apis and Bombus) to	inefficient pollinators, rarely		
		native Phormium tenax were	contacting the stigma		
		observed at 4 sites.	Most pollination deposition by bees	-	
		Outcrossing rates were	is self pollen		
		analysed using genetics and	No difference in outcrossing	±	
		compared between sites	between sites where bees were		
		where bees (including Apis)	common versus uncommon		
		were and were not common	Pollen foraging by bees may reduce	-	
			pollen available for deposition by		
			birds		
(Iwasaki et al.	New Zealand -	Plant and insect surveys	Introduced species (Apis, Bombus)	±	Weak - correlational
2018)	montane-alpine	were conducted along	prefer different flora than native		
	grassland	transects at 3 sites over 2	bees		
		years	Few Apis were present in the study	±	
			area		

(Markwell et al.	New Zealand-	Apis and Vespula wasp visits	Competition between Apis and	+	Weak - correlational,
1993)	honeydew beech	to a native tree Nothofagus	introduced wasps may be used to		nectar was in abundance
	forest	solandri were recorded. 1	reduce the number of wasps		most of the year
		site with 4 apiaries, samples	There were aggressive interactions	±	
		were taken within 1km of an	between the 2 species		
		apiary, over 5 years			
(Murphy and Robertson 2000,	New Zealand	Apis distribution was	Fruit and seed set of <i>P. tenax</i> were	-	Weak - correlational,
,		estimated using sugar-water feeders in 2 summers. Floral	higher at sites with bird visitation		abundance and diversity of
not peer			Abundance and diversity of insect visitors to manuka and <i>H. stricta</i>	-	pollinators varies between
reviewed)		visits to heather (invasive),			sites, day and time of day,
		flax (Phormium tenax),	were negatively correlated with Apis		contribution to pollination
		manuka (<i>Leptrospermum</i>	activity	<u>т</u>	by different species should
		scoparium) and Hebe stricta were recorded at 18 sites,	Standing nectar was highest at sites visited by <i>Apis</i> but not birds,	±	be measured following observed visits rather than
		but the timing and length of	therefore <i>Apis</i> do not deplete nectar		indirectly inferred from
		these observations is not	therefore Apis do not deplete nectal		average fruit and seed set
		recorded. Fruit and seed set			at sites, nectar quantity
		determined for each site.			may differ between sites
		Standing nectar was record			regardless of bird visitation
		at each site			regardless of bird visitation
(Pattemore and	New Zealand	Compared fruit set, pollen-	Fruit set was higher on open than	_	Weak to adequate - limited
Anderson 2013)		limitation and floral visits of	bird-excluded flowers		observations in some
,		a native shrub Alseuosmia	Apis may play a role in pollination at	+	years. Sites likely differ in
		macrophylla at 1 site with	sites without native birds		numerous ways other than
		and 1 without native birds a	<i>Apis</i> rob nectar	-	presence/absence of bird
		in 3 years (2005, 2008, 2009)	'		species, contribution of
		with exclusion experiments			Apis to pollination not
					investigated, no comments
					on the behaviour of Apis
					i.e. whether they make
					contact with reproductive
					parts

(Paynter et al. 2010)	New Zealand	Floral visitors to invasive <i>Cytisus scoparius</i> were recorded. Excluded pollinators from some flowers. 7 sites over 5 years	The most common pollinator was <i>Apis</i> (70% of visits) Seed rain was correlated with number of <i>Apis</i> and <i>Bombus</i> visits Absence of <i>Apis</i> due to colony losses from <i>Varroa</i> mites reduces pollination and seed set to levels at which biocontrol via seed destruction can be effective <i>C. scoparius</i> invasions may persist in some areas due to commercial	-	Weak - correlational
(Rader et al. 2009) North America - I	New Zealand - pak choi (<i>Brassica rapa</i> var. <i>chinensis</i>) crop	Measured pollen transfer during single visits in 11 fields	beehives that are treated for mites Apis transferred more pollen per stigmatic contact than 4 species and did not differ from 3 species Apis contact the stigma more than 4 species and did not differ from 3 species	+	Adequate - pollination outcomes not investigated
(Barthell et al. 2001)	California, USA	Recorded visits to a weed <i>Centaurea solstitialis</i> along transects at 3 sites. Excluded <i>Apis</i> from some flowers with mesh	There was a positive correlation between <i>Apis</i> visitation and seed-set <i>Apis</i> -excluded flowers produced more seeds	-	Weak - would be strengthened by comparing seed-set when flowers were bagged after pollination by different visitors. Some other pollinators were also excluded by the mesh
(Batra 1999)	Maryland, USA - Research station and suburbia	Recorded floral visits to a native tree <i>Nyssa sylvatica</i> near an apiary on approximately 20 trees over 3 weeks	No evidence that <i>Apis</i> displace native bees	±	Weak - only two <i>Apis</i> were seen on trees

(Bruckman and Campbell 2014)	California, USA - coastal sage scrub	Observed floral visits to a native herb <i>Phacelia parryi</i> at one site for 17 days over 3 months. The number of pollen grains deposited after a single pollinator visit was determined at a single site the following year. The year after that seed-set was determined after a single pollinator visit at the same site.	<i>Apis</i> deposits less pollen than native pollinators <i>Apis</i> pollination resulted in reduced seed set <i>Apis</i> made 83% of floral visits, and is thus an important pollen vector	- -	Adequate - there could be variation between sites or years due to variation in resource availability
(Cane and Schiffhauer 2003)	New Jersey, USA - cranberries (native)	Determined the number of pollen tredrads deposited in single visits by 3 native bees (Bombus affinis, Megachile rotundata, Megachile addenda) and Apis and compared fruit set, mass and seed set	Apis deposited the least pollen Apis-pollinated flowers produced less fruit than Bombus-pollinated flowers, but not of Megachile spp. Apis-pollinated flowers produced less fruit mass than Bombus- pollinated flowers, but not of Megachile spp. Apis-pollinated flowers produced less seeds than Bombus-pollinated flowers, but not of Megachile spp. Apis pollination improved all these measures over unpollinated flowers	- - -	Adequate
(Champerlain and Schlising 2008)	California, USA - savanna and grassland	Observed visits to and seed set in a native plant <i>Triteleia</i> <i>laxa.</i> 2 sites, 2 months in 2 years	Apis was the most abundant visitor (87-91%) and performs most of the pollination There was a correlation between the number of floral visitors (including Apis) and seed set	± +	Weak - seed set due to different pollinators was not measured directly, but by correlation to number of visits. There was lots of variation between sites - distance to agriculture,

					vegetation, non-bee pollinator abundance
(Dieringer 1992) *only abstract	USA	Compared number of pollen grains deposited and	Number of pollen grain deposited did not differ	±	Adequate
viewed		number of seeds produced per flower from single visits of Apis and Bombus pennsylvanicus on Agalinis strictifolia	Number of seeds per flower did not differ	±	
(Gillespie and Elle 2018)	Canada - oak- savannah fragments	Surveyed flowering of native Camassia quamash and C. Ieichtlinii and invasive	No evidence of direct impacts of <i>Apis</i> on native <i>Bombus</i> in either diet or visit rates	±	Weak - correlational
		<i>Cytisus scoparius</i> and abundance of <i>Apis</i> and four native <i>Bombus</i> to these plants along transects at 18 sites for 2 years, 6 visits per site per year	Diet overlap between pollinators is driven by native plant resources rather than non-native plant abundance	±	
(Ginsberg 1983)	New York, USA - old field	Collected pollen-collecting insects from flowers along transects at a single site	<i>Apis</i> outcompeted native bees at large clusters of attractive plants (apple and yellow rocket)	-	Weak - correlational, single site
(Hung et al. 2019)	California, USA - coast sage scrub	Floral visitors were collected along transects at 12 sites. 16 surveys were conducted every 4-5 days at a single site with 5 transects. Six surveys were conducted biweekly at 11 sites over 6 months.	Apis visits increase more rapidly than non-Apis visitors with increasing flower abundance Apis could disproportionately impact the most abundantly blooming plant species and their pollinators as they are disproportionally attracted to high floral density	-	Weak - correlational
(Javorek et al. 2002)	Canada - blueberry crop (native)	Determined the number of pollen grains deposited to <i>Vaccinium angustifolium</i>	Apis and Megachile spp. pollinated fewer flowers than Bombus, Andrena and Halictus species	-	Adequate

		often eingle visite et 1 site	Anis and Magnahila ann dar saits d		
		after single visits at 1 site	Apis and Megachile spp. deposited	-	
		over 3 years (7-40	less pollen than Bombus, Andrena		
		individuals per species)	and Halictus species		
			Apis pollination was more effective	+	
			than no pollination		
(Jean 2005)	Indiana, USA -	Observed pollinators on	Apis stole pollen from Bombus and	-	Robust presence /absence
	black oak savannas	Cirsium discolor	two native bee species, Megachile		
			montivaga and Melissodes desponsa		
(Keys et al.	Arizona, USA -	Determined pod production	Pod production after single visits by	±	Adequate
1995)	upland Sonoran	of native Prosopis velutina	Apis did not differ from that of		
	desert	after single visits on 7 trees	Chalicodoma, Perdita, Volucella or		
		at 2 sites (8-62 individuals	Colletidae species		
		per species)			
(Kremen et al.	California, USA -	Counted pollinator visits to	No evidence that native bee	±	Weak - correlational
2002)	watermelon crops	watermelon on organic and	abundance and diversity declined		
		conventional farms near or	with increasing Apis abundance		
		far from natural habitat			
		(there were no conventional			
		farms near natural habitat)			
		over 2 years (14 farms year			
		1, 16 farms year 2)			
(Krend and	Colorado, USA	Observed floral visitors in	Apis may prefer introduced plants	±	Weak - not significant
Murphy 2003)	,	patches of native,	(P=0.056)		C
., ,		Heterotheca villosa and	Apis may contribute to spread of	-	
		Grindelia squarrosa, versus	introduced plants		
		introduced (Cirsium arvense	Native bees were 7-8 times more	±	
		and Centaurea diffusa)	abundant on both native and		
		plants. Each plant species	introduced plants		
		was observed 4-6 times,			
		duration and number of			
		sites unreported			
					I

(Laroca and	Kansas, USA -	Observed interactions	Apis stole pollen from the body and	-	Robust presence/absence
Winston 1978)	university campus	between Apis and a native	appendages of male Bombus		
		Bombus on thistle at 1 site			
		on 1 day			
(McGregor et al.	Arizona, USA	Observed floral visits to a	Apis may collect an entire pollen	-	Weak - It is assumed that
1959)		native cactus Carnegiea	load from a single flower		the same black Apis was
		<i>gigantean</i> on 2 days	Nectar foraging Apis are coated in	+	seen multiple times,
			pollen		marking it would have
			A single black Apis was observed to	-	been preferable. Actual
			make several visits to the same		pollination by Apis was not
			flower, suggesting that Apis may be		tested. Observations were
			a poor pollinator unless there are so		only made from 0500-1245
			many of them that they require		on 2 days
			multiple flowers to obtain a load of		
			food		
(Minckley et al.	Southwestern USA	Bees were sampled on a	Apis were collected at 66% of sites	±	Weak - correlational, effect
1999, Minckley	- desert	native bush <i>Larrea</i>	No relationship between Apis	±	on native bee population
et al. 2003)		tridentate. Pollen availability	density and native bee abundance		measures not investigated
		was measured at each site.	and diversity		
		Bee biomass was estimated at each site. Conducted over	Bee populations are rarely pollen limited	±	
		3 years. Only 6/47 sites were	If competition occurs it is likely	±	
		sampled more than once	short-term and uncommon	-	
			For many species population size		
			lags a year behind resource		
			availability		
			Most studies are insufficient to		
			determine if Apis compete with		
			native bees		
			Long-term population studies are		
			needed		

(Morandin and	California, USA	Compared native bee	Apis preferred native plants at	±	Weak - length of time
Kremen 2013)		abundance and diversity and	mature hedgerows		between assessments
		foraging decisions of native	Apis exhibited no preference at	±	differed between
		bees and Apis on exotic	newly-planted hedgerows		treatments and study
		versus native plants in	Apis abundance did not differ	±	period varied between
		mature and newly-planted	between treatments		treatments
		hedgerows. 4 sites for each			
		type of hedgerow for 1			
		season			
(Ott et al. 2016)	California, USA -	Observed visitors to a native	S. apiana suffers from pollinator	+	Adequate - pollinator
	open grassland,	sage <i>Salvia apiana</i> with	limitation		contribution would better
	coastal sage scrub,	hand-pollination	Apis is a poor pollinator due to its	-	be estimated by bagging
	sandy open areas,	experiments	small size, however its high		flowers after single visits
	garden	4 sites for 2 months	frequency likely makes it the main		and comparing seed-set.
			pollinator		No description or
			Apis attack other visitors	-	quantification of the
					attacks
(Park et al. 2016)	New York, USA and	Compared fruit set and seed	Apis deposited less pollen to stigmas	-	
	Canada - apple	set of apples pollinated in	Fruit and seed set did not differ	±	
	orchard	single visits by Apis, Andrena			
(=)		and Bombus			
(Pleasants 1981)	Colorado, USA	Floral visitors were counted	Apis numbers were reduced in the	-	Weak - correlational,
		at 2 sites over 2 years	second year, while Bombus species		perhaps Bombus had been
			that overlapped in resource usage		foraging elsewhere the
			were more abundant that year. This		previous year
			is taken as evidence for resource		
			competition		
(Rader et al.	Pennsylvania &	Determined the number of	Apis deposited less pollen than wild	-	Adequate - pollination
2013)	New Jersey, USA -	pollen grains deposited on	bees		outcomes were not
	watermelon crops	stigmas during single visits			investigated
		to watermelon on 18 farms			

(Richardson et al. 2016)	Florida, USA - scrub	Observed floral visits to an endangered native mint <i>Dicerandra immaculata</i> over 2 weeks in 2012 and 2014 at	<i>Apis</i> visited 1.5x more flowers within plants than native pollinators	-	Weak - pollination efficiency, outcrossing and seed set not examined
(Rogers et al. 2013)	North Carolina - USA	3 sites Artificial flowers were placed in flight cages along with either <i>Apis, Bombus</i> or a combination of the two. <i>Bombus</i> colonies were used in multiple setups, but <i>Apis</i> colonies were used only once. Foraging was observed for 30 minutes in 5 replicates	Most <i>Bombus</i> stopped foraging at a plant after encountering <i>Apis</i> There were 30 instances of <i>Apis</i> encountering <i>Bombus</i> Foragers encountering another bee are more likely to move away than those not encountering another bee, regardless of species <i>Apis</i> were not aggressive	- ± ±	Adequate but highly artificial. <i>Bombus</i> colonies may have learned the setup, since colonies were used more than once individuals were not naive
(Schaffer et al. 1979)	Arizona	Plant density, nectar and pollen production in <i>Agave</i> <i>schottii</i> were measured and floral visits by <i>Apis</i> and native <i>Bombus</i> and <i>Xylocopa</i> recorded at 6 sites over several days	There was resource partitioning by time of day, plant density and nectar concentration Native bee visits were negatively correlated with <i>Apis</i> abundance	± -	Weak - correlational
(Schaffer et al. 1983)	Arizona USA	Visitation rates to and nectar availability of a native plant <i>Agave schottii</i> were recorded. Density of <i>Apis</i> and ants was manipulated and their effect on <i>Bombus</i> and solitary bees determined. Ants were excluded to some or all plants at the site. A single	Removing ants from some flowers increased <i>Apis</i> and <i>Bombus</i> abundance Removing all ants increased <i>Apis</i> and solitary bees Increasing the number of <i>Apis</i> hives on the site from 2 to 4 had no effect on the number of <i>Apis</i> visits Removing the <i>Apis</i> hives increased the number of feral (dark) <i>Apis</i> , and	± ± ±	Weak - correlational, population densities may have changed due to some other variable, particularly given the increase and then decline after <i>Apis</i> were removed

		site censused 7/day over ~	the number of solitary bees and		
		month	Bombus increased and then declined		
(Stimec et al.	Canada	Collected pollen from 8 Apis	75% of identified plant species were	±	Adequate
1997)		colonies over 16 weeks	introduced taxa		
		using pollen traps	Apis forage on introduced taxa even	±	
			if native plants are available		
(Stoepler et al.	Virginia, USA	Recorded the number of	Apis did not differ from Bombus or	±	Adequate
2012)		pollinaria removed and	Epargyreus in the number of		
		inserted in single visits to	removed pollinium		
		Asclepias exaltata, A. syriaca	Hybridization is largely performed by	±	
		and their hybrid at 1 site	Bombus		
(Tepedino 1981)	Utah, USA	Counted the number of	Fruit set and mean developmental	±	Adequate
		pollen grains deposited and	time did not differ between P.		
		resulting fruit set and	<i>pruinosa</i> or <i>Apis</i> visits		
		development time after	Apis deposited a similar number of	±	
		single visits of Apis and	pollen grains as <i>P. pruinosa</i>		
		native Peponapis pruinosa			
		to Cucurbita pepo			
(Tepedino et al.	Utah, USA -	Assessed Apis and native	Neither native bee nor Apis activity	±	Weak - correlational
2007)	orchards	bee activity in apricot and	in orchards was correlated with		
	surrounded by	cherry orchards at various	distance to Apis hives		
	national park	distance from <i>Apis</i> hives.	Apis were more abundant on	±	
		Recorded floral visitors to	apricot, apple and cherry while		
		orchards of 4 fruit species	native bees were more abundant on		
		over 2 years	pears		
(Thoenes 1993)	Arizona, USA	Attached dead bee traps to	147 Bombus and 5 carpenter bees	-	Adequate -
		36 Apis colonies for 8	were killed trying to enter Apis		presence/absence
		months at one site	colonies		
(Thomson 2004)	California, USA -	2-3 Apis colonies introduced	Bombus colonies near Apis colonies	-	Weak - some Bombus
	coastal scrub	to 3 sites for 4 months for	had lower foraging rates		colonies were killed by
		each of 3 years and native	Bombus colonies near Apis colonies	-	predation or damaged by
		Bombus colonies introduced	had decreased proportion of pollen		wax moth. Some pollen

(Thomson 2006)	California, USA -	along a 1km transect. Observed foraging activity, counted pupal cocoons	foragers, suggesting nectar limitation Number of individuals produced did not vary with distance from <i>Apis</i> colonies Reproductive success (gyne number & ratio, gyne size, male sightings) increased with increasing distance from <i>Apis</i> colonies	± -	foragers likely also foraged for nectar. Pollen or nectar amount/concentration was not measured, and thus resource intake was not truly quantified. Gyne numbers and ratio is related to male investment, which cannot be differentiated from workers. Number of males produced was estimated from the number leaving nests during forager observations, rather than directly. There is low probability of observing male dispersion flights. Number/ratio of gynes did not vary when damaged nests were removed from analysis. <i>Bombus</i> colonies were well established upon placement, many nest fail to establish and thus <i>Apis</i> competition on this aspect is unstudied As for Thomson 2004,
(1100115011 2006)	coastal scrub		Apis and Bombus forager numbers were correlated in only 1/7 months Niche overlap varied, but was higher during resource scarcity	± ±	As for Thomson 2004, correlational

(Thomson 2016)	California, USA -	Counted Apis and native	Apis abundance negatively	-	Weak - correlational
	coastal scrub	Bombus foragers at 4-10	correlated with Bombus abundance		
		patches for one month in	the following year		
		11-13 years over a 15 year	Resource decline was negatively	±	
		period	correlated with Bombus abundance		
(Thomson and	California & New	Counted number of pollen	Apis and Bombus remove similar	±	Adequate - pollination
Goodell 2001)	York, USA - apple	grains depositved on	amount of apple pollen		outcomes not tested
	and almond	stigmas and removed from	Apis depositis less pollen to apple	-	
	orchards	anthers folling single visits of	stigmas		
		Apis and Bombus spp.	Apis and Bombus remove and	±	
			deposit similar amounts of pollen to		
			almonds		
(Thorp and	California, USA -	Recorded foraging of Apis	Apis stole pollen from the scopae of	-	Adequate -
Briggs 1980)	sunflower farm	and native bees on	native bees <i>Diadasia enavata</i> and		presence/absence
		sunflowers	Halictus ligatus		
(Wilson and	New York, USA	Quantified pollen removal	Apis perform little pollen transfer	-	Adequate - amount to
Thomson 1991)		and transfer from single	Apis remove a large quantity of	-	pollen required for
		visits of floral visitors to	pollen in one visit		adequate pollination not
		Impatiens capensis			examined
(Wist and Davis	Canada	Determined the number of	Pollen grains per stigma that	+	
2013)		retracted styles, pollen	germinated on retracted styles was		
		grains per stigma on	highest for Apis		
		retracted styles and pollen			
		grains germinated per			
		stingma on retracted styles			
		of Echinacea angustifolia			
		after single visits by insects			
		at 2 sites			
(Woods et al.	Kansas, USA -	Observed floral visitors to 3	Apis was the primary visitor to the	±	Weak - correlational,
2012)	tallgrass prairie	native and a single invasive	single invasive species		pollination effectiveness
		plant species (<i>Lespedeza</i>) at	Apis was never observed on the 3	±	not demonstrated
			native species		

		6 sites, at least 2 sites per			
(Young et al.	Vermont, USA	species over 2 years Determined the amount of	There was no difference in the	±	Adequate
2007)	,	pollen removed and	number of pollen grains removed		
		deposited and seed	There was no difference in the	±	
		production of Impatiens	number of pollen grains deposited		
		capensis when pollinated by	There was no difference in seed	±	
		single visits of Apis and	production		
		Bombus impatiens			
North, Central and	d South America - Intro	oduced Africanized			
(Aizen and	Argentina -	Compared Apis and native	Native bee visits are negatively	-	Weak - correlational,
Feinsinger 1994)	subtropical dry	bee visitation rates within	correlated with the number of Apis		confounded by differences
	forest	fragmented forest on two	visits, but may be due to Apis		in patch size
		native tree species Prosopis	preferring smaller forest fragments		
		nigra and Cercidium			
		<i>australe.</i> 4 sites, 10-12 days			
		per species in 1 year			
(Andena et al.	Brazil - transition	Collected foraging bees at	Apis have the broadest niche and	±	Weak - correlational,
2012)	zone between	plants along 3 transects at 1	are the most abundant bee		unable to compare pre and
	cerrado and	site twice a month for an	Apis have not altered the structure	±	post- <i>Apis</i>
	Atlantic forest	unknown period	of the bee assemblage as intra-		
			specific competition is stronger than		
/		.	inter-specific competition		
(Anna-Aguayo et	Mexico - desert	Recorded interactions	No agonistic behaviour by <i>Apis</i>	±	Weak - resource
al. 2017)		between <i>Apis</i> and a native	Female native bees did not visit	-	availability may affect
		bee Lithurgus littoralis on a	flowers with Apis present		behaviour, something that
		native cactus <i>Opuntia</i>			may not be experienced in the short duration of the
		huajuapensis over 5 days at			
		the beginning of the			experiment at a single site
		flowering season at 1 site			

(Badano and	Mexico - coffee	Counted visitation rates to 4	Native pollinator diversity was	-	Weak - correlational
, Vergara 2011)		coffee plants at each of 12	negatively associated with Apis		
, , , , , , , , , , , , , , , , , , ,		coffee plantations. 1 day per	abundance		
		plantation. Distance from			
		native forest and abundance			
		of floral resources were			
		included as variables			
(Brizola-	Brazil - suburbia	Bees were collected from a	A stingless bee Trigona spinipes is	±	Weak - correlational, could
Bonacina et al.		native tree Tibouchina	aggressive toward Apis, effectively		be improved by testing the
2012)		granulosa at 3 times of day,	excluding them		concentration and volume
		sampling sites and	There was resource partitioning by	±	of nectar/pollen available
		frequencies undescribed	time		throughout the day
(Cairns et al.	Mexico -	Floral visitors were recorded	Apis was observed attacking	-	Adequate - the frequency
2005)	patchwork forest	along 3 transects in each of	stingless bees		of attacking behaviour may
	and farming	3 areas that differed in	Apis was the dominant species in all	±	vary with resource
		ecosystem disturbance	but the least disturbed habitat		availability, an effect on
					fitness has not been
					demonstrated
(Canto-Aguilar	Mexico - squash	Compared pollen deposition	Female P. limitaris deposits 2 times	-	Adequate
and Parra-Tabla	crop (native)	of Apis and Peponapis	as much pollen as Apis		
2000)		limitaris to Cucurbita	Deposition does not vary between	±	
		moschata in single visits	Apis and male P. limitaris		
(Carbonari et al.	Brazil - secondary	Counted the number of	84% of flowers were robbed in the	-	Weak - It was assumed
2009)	forest fragment	perforated (robbed) flowers	peak blooming period		that all robbing was
		of a native plant Pyrostegia	Aborted buds were more likely to	-	performed by <i>Apis</i> due to
		venusta (100 samples)	have been robbed		other visitors being
		Compared number of	This may affect regeneration of	-	uncommon. However
		perforations in abortive and	forest fragments as this species is a		other studies established
		non-abortive buds	pioneer plant		that the main nectar
					robber is likely <i>Trigona</i>
(Carneiro and	Brazil - tropical	Recorded visits and amount	Apis deplete pollen	-	Weak - correlational
Martins 2012)	rainforest	of pollen removed by Apis	Apis is one of the main pollinators	+	
		from native Spondias	Native bee abundance increased	_	
------------------	---------------------	-----------------------------------	--	---	------------------------------
		mombin over 3 years,	threefold when Apis were prevented		
		excluded early Apis visits	from early foraging		
		using gauze			
(Cortopassi-	Brazil - university	Pollen was collected from	The species differ in preferred pollen	±	Weak - correlational
Laurino and	garden	new storage pots of Trigona	sources		
Ramalho 1988)		spinipes and from pollen			
		traps placed on Apis			
		colonies over 13 months			
(de Menezes	Brazil -	Floral visitors and plant	Apis abundance varied between 0-	±	Weak – correlational, 1 site
Pedro and de	cerrado/savanna	species were recorded at 1	61.4% of samples		
Camargo 1991)		site for 12 hours per	Most plants don't permit	±	
		fortnight for 1 year	exploitation by Apis		
			Little resource overlap between Apis	±	
			and native bees		
			Interference by <i>Apis</i> on food niche is	±	
			minimal		
(Dick 2001, Dick	Brazil - tropical	Pollination data were	Apis were not observed foraging in	±	Weak to adequate -
et al. 2003)	rainforest	collected on a large	continuous forest		differences in seed
		Amazonian tree Dinizia	Apis are important pollinators in	+	production may be due to
		<i>excelsa</i> in pasture, forest	degraded tropical forest		differences in soil quality
		fragments and pristine	Apis enable geneflow between	+	etc
		continuous forest	fragmented populations due to their		
			foraging range		
			Trees in pasture and forest	+	
			fragments produced 3x number of		
			seeds which is attributed to Apis		
(do Carmo et al.	Brazil - campos	Pollinator visits and	Apis remove most of the pollen from	-	Weak to robust - pollen
2004)	rupestres, gradient	behaviour to a native tree	male flowers		transfer experiments had
	of field to	<i>Clusia arrudae</i> were	<i>E. nigrohirta</i> has less than 0.1%	-	poor replication. The
	chaparral-like	recorded over 7 months.	pollen grains on their body when		amount of pollen required
	vegetation	The amount of pollen	they forage on a flower previously		for adequate pollination

		removed by <i>Apis</i> was assessed with exclusion experiments. Amount of pollen transferred to native orchid bee <i>Eufriesea</i> <i>nigrohirta,</i> which is the primary pollinator, was assessed with exclusion experiments in 3 replicates. <i>Apis</i> effect on seed set were estimated by correlating the frequency of <i>Apis</i> visits to male flowers with seed production on female	foraged on by <i>Apis</i> compared to an unvisited flower Honey bee visits reduced seed production There was no aggressive behaviour by <i>Apis</i> <i>Apis</i> were expelled from flowers by <i>Trigona spinipes</i> <i>Apis</i> avoided flowers with other pollinators on them <i>Apis</i> did not remove the resource (resin) that <i>E. nigrohirta</i> is foraging for	- ± ±	was not assessed. There was poor replication of pollen removal by <i>Apis</i> and visits were made by other species, which were considered inconsequential. <i>Apis</i> effects on seed production were measured indirectly, though only 2 visits were recorded to female flowers, neither of which included contact with the stigma
		flowers open on the same day.			
(Fagua and Ackerman 2011)	Puerto Rico - subtropical dry	Compared number of fruit and seeds produced by	Hummingbirds attacked <i>Apis</i> and drove them away (undescribed)	±	Adequate
,	forest	native <i>Melocactus intortus</i> when pollinated in single	Seed set did not differ between pollinators	±	
		visits by <i>Apis</i> , ants (<i>Solenopsis</i>) and hummingbirds (<i>Anthracothorax dominicus</i>) at 1 site	Fruit set and number does not seem to differ between pollinators (statistics not provided)	±	
(Faria and Araujo 2015)	Brazil - savannah fragments	Observed floral visits to 3 native <i>Psychotria</i> <i>carthagenensis</i> populations in 1 season. Fruit production	Fruit set from <i>Apis</i> -visited plants was 10-33% and did not differ from those visited by <i>Augochloropsi</i> spp. (27-30%)	±	Adequate
		was determined after single visits by <i>Apis</i> or native <i>Augochloropsis</i> bees	<i>Apis</i> is the main pollinator of <i>P. carthagensis</i>	±	

(Franco et al.	Brazil - rocky fields	Collected Apis and native	Niche overlap between the bee	±	Weak - correlational
2009)		Bombus on flowers along a	species varied from 0.09-0.50		
		1.5km trail once a month for			
		6 months			
(Freitas and	Brazil - cashews	Comparison was made	<i>C. tarsata</i> is more efficient at	±	Adequate
Paxton 1998)	(native)	between Apis and a native	removing pollen		
		bee Centris tarsata	C. tarsata deposits a greater	-	
		pollination of native	proportion of pollen onto stigmas		
		cashews over 2 years with	Similar seed setting efficiency	±	
		exclusion experiments to			
		enable comparison of single			
(Fumero-Cabán	Puerto Rico	visits Counted the number of	There was no aggression by Apis		Adequate - did not
and Meléndez-	PUELLORICO	pollen grains deposited to	<i>Apis</i> did not rob flowers, but <i>C</i> .	± +	examine fruit or seed
Ackerman 2007)		native Pitcairnia angustifolia	flaveola and C. maugaeus did	т	production
Ackerman 2007)		in single visits by	Apis deposited less pollen than A.	_	production
		hummingbirds	viridis	-	
		(Anthracothorax viridis,	<i>Apis</i> deposited more pollen than <i>C</i> .	+	
		Chlorostilbon maugaeus),	flaveola and C. maugaeus	т	
		Apis, Coereba flaveola			
(Giannini et al.	Brazil	Built interaction networks	Bee species had similar abundance,	±	Adequate
2015)		between plants, Apis and a	were linked to a similar number of		
/		native stingless bee Trigona	plants and were of similar		
		<i>spinipes</i> . Included surveys	importance in their networks		
		which were conducted at	The Apis network is more nested -	+?	
		least monthly for 1 year	has a small group of highly		
			connected species to which the rest		
			of the network depends on. This		
			helps maintain the whole network		
(Jha and	Mexico highlands -	Recorded visits to feeders in	Apis and social native bees increased	-	Weak - correlational and
Vandermeer	coffee plantations	shaded and unshaded coffee	their foraging force on the second		artificial
2009a, b)		plantations	day of feeder provision, while non-		

	and a forest		social native bee and wasp visits to		
	reserve		feeders reduced. Suggest this is due		
			to resource competition		
(Martins et al.	Brazil - grassland	Collected all bees visiting	Competition with Apis contributes to	-	Weak - don't quantify the
2013)		plants and the plant species	native bee declines, as does habitat		effect of <i>Apis</i> on native bee
		monthly for 1 year.	loss, introduced plants and climate		declines
		Collected meteorological	change		
		data and determined	Potential and real impacts of Apis on	±	
		increase in urbanization.	native bees in the Neotropics has		
		Compared results with	not been conclusively shown		
		similar surveys in 1967 and			
		1990 which are not available			
		(Sakagami et al. 1967,			
		Bortoli and Laroca 1990)			
(Macias-Macias	Mexico - native	Compared fruit weight and	Fruit set was lower for Apis-	-	Adequate
et al. 2009)	tomato (<i>Solanum</i>	number of seeds after single	pollinated tomato flowers		
	lycopersion) and	visits to S. lycopersion and C.	Fruit weight was lower for Apis-	-	
	pepper crops	chinense by Apis and two	pollinated tomato		
	(Capsicum	native bees (<i>Exomalopsis</i>	Fruit set was lower for Apis-	-	
	chinense)	and Augochloropsis)	pollinated pepper flowers		
			Fruit weight was lower for Apis-	-	
			pollinated peppers		
(Morales and	Argentina -	Compared plant-pollinator	Apis was the species most closely	±	Adequate
Aizen 2006)	temperate forest	webs between the 13	associated with introduced plant		
		introduced and 15 native	species		
		plants that were most			
		abundant at 4 sites along a			
		50km transect			
(Osorio-Beristain	Mexico - tropical	Floral visitors to	Pollinator composition has changed	-	Weak - differences in
et al. 1997)	dry forest	Kallstroemia grandiflora	since the introduction of Africanized		pollinator composition may
		were compared before (1	Apis		be due to the introduction
		day in 1989) and after (2			of Apis or may represent

		days in 1994) the arrival of Africanized <i>Apis.</i> Number of	<i>Apis</i> transfers 2.5 times less pollen than a native bee	-	natural fluctuations, short sampling period
		pollen grains deposited on	Apis visits flowers 2.65 more	+	sampling period
		bodies and from bodies to	frequently than a native bee		
		flowers was compared	Overall Apis is as efficient at	+	
		between Apis and a native	pollination as native bees		
		stingless bee Trigona nigra			
(Percival 1974)	Jamaica - coastal	Observed floral visitors	There are few Apis in Jamaica	±	Weak - correlational
	scrub		Apis visited 21 plant species, of	±	
			which they did not provide		
			pollination to 3		
			Apis works on some of the same	±	
			species of plant as native pollinators		
			Apis commenced foraging earlier	±	
			than butterflies and solitary bees at		
			a site where observations began at		
			sunrise		
(Pick and	Brazil - Caatinga	Observed floral visitors to a	Apis foraged only for nectar,	-	Adequate - amount of
Schlindwein		native climbing plant	discarding pollen grains, resulting in		pollination performed by
2011)		<i>Merremia aegyptia</i> at 1 site	almost 50% pollen loss		Apis not quantified
		for 3 months in each of 2	Apis contacted stigmas in 2/3 flower	+	
		years	visits		
			Apis flew between different plants	+	
(Pinkus-Rendon	Mexico - squash	Observed floral visitors at 1	Floral resources are not used	±	Weak to adequate -
et al. 2005)	and watermelon	100m ² field for each crop.	concurrently by different bee		correlational, no
	crops	Observed encounters	species		replication,
		between Apis, Partamona	Apis displaced bees more frequently	-	presence/absence
		bilineata, Peponapis limitaris	than it was displaced		
		and Augochlor nigrocyanea			
(Polatto et al.	Brazil, secondary	Observed visits to native	Apis may accidentally pollinate S.	±	Adequate
2012)	forest fragment	Sparattosperma leucanthum	leucanthum		

			<i>Apis</i> use holes made by other (native) robber species to rob nectar, which does not result in pollination	-	
(Polatto and Chaud-Netto 2013)	Brazil - degraded secondary forest fragment	Floral visits to 19 native plant species were recorded over 1 year	<i>Apis</i> were the most common visitor <i>Apis</i> foraged on the most attractive plants	± ±	Weak - plant attractiveness was defined by the number of floral visitors. Given that <i>Apis</i> were the dominant species their preferences contribute more to 'attractiveness'. These plant species may not be attractive to other foraging species, which may partially explain their lack of abundance
(Romero and Quezada-Euán 2013)	Mexico	Determined fruit set and fruit and seed weight of native Jatropha curcas after pollination by Apis and native bee Frieseomelitta nigra at 1 site	Fruit set, fruit weight and seed weight did not differ between treatments	±	Adequate
(Roubik 1978)	French Guiana - forest-savannah transition zone	Introduced and removed Apis hives and recorded floral visits on 4 plant species over 8 months, with 4-27 days for each plant species	Stingless bees were less abundant in the presence of <i>Apis</i> on <i>Melochia</i> Native bee density was unchanged on <i>Rhynchospora, Borreria</i> and <i>Mimosa</i> No aggression was observed	- ± ±	Weak - correlational, <i>Apis</i> density was low and thus competition may have been too low to detect, particularly if confounded with climatic variation
(Roubik 1980)	French Guiana - forest-savannah transition zone	Recorded visits to honey- water feeders of varying concentration and volume. <i>Apis</i> colonies (1-7) were	Two normally aggressive <i>Trigona</i> species abandoned feeders visited by <i>Apis</i>	-	Adequate - artificial feeders were unusually rewarding

		placed near a colony of a	Apis abandoned feeders visited by	±	
		stingless bee species. Data	two other <i>Trigona</i> species	<u> </u>	
		were collected until one	Apis dominated more feeders	_	
		species displaced others	Apis exhibited low levels of	-	
		from all 4 feeders or the	-	-	
			aggression toward one <i>Melipona</i>		
		species partitioned the	bee and one polybiine wasp		
		feeders. 1 year at 9 sites			
		over a 20km transect			
(Roubik 1981)	Costa Rica -	Observed native Trigona	T. corvina attacked Apis	±	Weak to adequate -
	Riparian forest	corving and Apis on native	Apis abundance on remaining B.	±	correlational,
		weedy plant Baltimora	recta increased by 44% after		presence/absence
		recta, before and after	resource removal compared to 17%		
		removing approximately	for T. corvina		
		1km ² of the plant			
(Roubik 1983)	French Guiana -	Introduced (1 month) and	Apis had no effect on the number of	±	Weak - poor replication, no
	lowland forest	removed Apis colonies (5-	brood produced by native bee		control site
		15) and measured brood	colonies		
		production and food storage	Apis had no effect on food stored by	±	
		by 2 native bees <i>Melipona</i>	native bee colonies		
		<i>favosa</i> and <i>M. fulva</i> at 2			
		sites. Site 1 had 2 colonies of			
		each <i>Melipona</i> and site 2			
		had 2 <i>M. fulva</i> and one <i>M.</i>			
		favosa			
(Roubik et al.	Panama - lowland	Monitored pollen, resin and	Apis foraged on the same pollen and	±	Weak - correlational, no
1986)	forest	nectar quality and quantity	nectar resources as native bees		species have gone extinct
		in returning foragers of 12	Native bees switch resources in the	-	
		native bee species,	presence of <i>Apis</i>		
		comparing days when 22	There were fewer native bee	-	
		Africanized Apis colonies	foragers when Apis were foraging		
		were or were not allowed to	Apis gathers more nectar and pollen	-	
		forage	that all stingless bees combined		

(Roubik and Villaneueva- Gutiérrez 2009)	Mexico	Trap nests were provided for solitary bees over a 80km transect. Pollen was collected from trap nests and identified. Ran over an 18 year period, spanning pre- <i>Apis</i> invasion (1988- 1991, although <i>Apis</i> first arrived in 1989) to established- <i>Apis</i> (2001- 2005)	Calculations based on colony populations, food stores and flight range predict that some stingless bee species may go extinct Solitary bees shifted to different resources after invasion by <i>Apis</i> The solitary bee community changed after the arrival of <i>Apis</i> , but did not decline <i>Apis</i> possibly led to increased floral resources through pollination	- ± +	Weak - the period prior to <i>Apis</i> arrival is short, and thus it is difficult to conclude that foraging resources changed, rather than there being extreme resource variation in the year preceding arrival. There was low abundance of solitary bees in the year preceding and 1991 (hurricane, low rainfall). This points to perturbation in the 'before' period. The study was performed in a reserve, but landscape changes in the surrounding area are unknown
(Roubik and Wolda 2001)	Panama	Measured bee demography using two light traps on a single tree. Traps were emptied weekly over 17 years (1977-1993) <i>Apis</i> abundance was further measured as the number of colonies destroyed. <i>Apis</i> arrived in 1984	Native bee abundance did not correlate with <i>Apis</i> abundance Native bee abundance did not decrease Some native bees increased in abundance	± + +	Weak - correlational, no site replication, interactions with rainfall may limit the ability to detect an effect of <i>Apis</i> on native bee abundance

(Sanguinetti and	Argentina -	Observed floral visits to 2	Apis is likely a less efficient	±	Adequate
Singer 2014)	transition between	native orchids Chloraea	pollinator than Bombus, but does		
	sub-antarctic and	virescens and Brachystele	pollinate both species		
	patagonic	unilateralis over 3 months in	The majority of pollination is	±	
	provinces	each of 2 years	performed by 2 introduced Bombus		
(Santos et al.	Brazil - Caatinga	Performed network analysis	Apis should make plant-pollinator	+	Adequate
2012)		of plant-pollinator	networks more robust to extinctions		
		interactions. Fortnightly -	as lost interactions are backed-up		
		monthly sampling for one	Apis cause strong changes in the	±?	
		year. Included data from	structure of native bee-plant		
		prior studies	networks		
			Apis occupied the highest functional	-?	
			role in all networks		
			Pollination networks may look	-	
			healthier but be dominated and		
			degraded by Apis		
			Simulated removal of Apis decreases	±	
			nestedness and increases modularity		
(Telleria 1993)	Argentina - pampa	Pollen traps were placed	Apis prefer non-native plants	±	Adequate
		outside <i>Apis</i> hives over 8			
		months			
(Watts et al.	Peru - forest	Pollination effectiveness of	Main natural pollinators are large	±	Adequate
2012)		hummingbirds, native bees	native bees		
		and moths and introduced	Apis are as effective at pollination	±	
		Apis on a native shrub			
		<i>Duranta mandonii</i> were			
		compared at 9 sites over 2			
		months with exclusion			
		experiments			
(Watts et al.	Peru - highlands	Assessed the structure of	Apis dominated the bee fauna and	±	Adequate
2016)		plant-pollinator networks in	were hubs of 60% of networks		
		nine valleys along 90			

		transects at different	Networks differed between sites	±	
		altitudes and life zones	where <i>Apis</i> are and are not	<u> </u>	
		artitudes and me zones	dominant		
(Wilms et al.	Brazil primary	Collected bee visitors to	Apis had the largest niche breadth	±	Weak - correlational
1996)	rainforest with	flowers over 4 years at one	Mass-flowering food sources should	±	
	patches of	site 5km in diameter	enable stingless bees to avoid		
	secondary growth		competition with Apis		
(Wilms and	Brazil - tropical	2 colonies each of 2 native	Niche overlap between <i>Melipona</i>	±	Weak - no replication. The
Wiechers 1997)	rainforest	stingless bees and	and Africanized Apis was stronger		longer period spent
		Africanized <i>Apis</i> were place	for nectar than pollen		collecting pollen from Apis
		at one site. Pollen was	Stingless bees forage on fewer	±	increases the likelihood of
		collected from Apis using	species than Apis		collecting more species
		pollen traps. Honey was	All species were observed visiting	±	and provides more
		sampled by removing 2	the same flowering patches,		accurate estimates of
		combs per hive per month.	therefore there was not physical		resource use. Using pollen
		Pollen was collected from	exclusion		in honey to identify the
		native bees by closing the	The peak in newly filled pollen pots	±	nectar source may not be
		entrance to the colony for 5	in stingless bees coincided with a		accurate. Peaks in stingless
		minutes every 30 minutes	period of low potential competition		bee collection may be due
		and removing returning	with Apis. Thus, there is indirect		to natural seasonal
		foragers' pollen load. Pollen	evidence of competition for food		population peaks in both
		and honey were also			stingless bees and floral
		collected from new storage			resources, rather than
		pots.			from release from
					competition with Apis
(Wolda and	Panama - tropical	Two light traps were place	Apis has produced no noticeable	±	Weak - correlational, as
Roubik 1986)	lowland forest	on one large tree at	changes in abundance of other bees		only 1 Apis was collected
		different heights (3 and			(in 1983) it was likely too
		27m). Funnel traps were			soon to conclude that Apis
		placed on a ridge. Only bee			was not affecting native
		species were examined.			bee abundance
		Study conducted over 7			

		years (1977-1983). Africanized <i>Apis</i> arrived in 1982			
(Yamamoto et al. 2012)	Brazil - Passionfruit crop	Recorded visitation at 4 sites over 4 years	<i>Apis</i> remove all pollen from passionfruit (native) without pollinating them as they rarely touch the stigma	-	Robust
Asia Pacific - Intro	oduced				
(Abe et al. 2008)	Japan	Tested if resource competition with <i>Apis</i> , habitat loss, agricultural chemicals or predation affects native bee numbers using a collection of 9 islands which differ in presence/absence of these factors.	Competition with <i>Apis</i> cannot explain loss of native bees	±	Adequate - natural experiment
(Aizen et al. 2008)	Southern Andes/ Oceanic islands	Analysed 10 paired plant- pollinator webs that had varying numbers of alien species. Findings are based on many species, but <i>Apis</i> are included	Systems with large number of alien species have decreased connectivity among native plants and pollinators, making them highly dependent of generalist alien species	-	Robust - meta-analysis
(Hanna et al. 2013)	Hawaii	Compared insect visitation rates and fruit production in a native tree <i>Metrosideros</i> <i>polymorpha</i> between control plots (4) and plots where an invasive robber wasp had been removed (4) over 2 years	<i>Apis</i> and native bee <i>Hylaeus</i> visitation and fruit production increased at experimental plots <i>Apis</i> appear to be acting as a substitute pollinator by replacing extinct or threatened bird species	± +	Weak - fruit production was not measured for pollination by <i>Apis</i> and other insects separately

· · · · ·
itat loss not
or, see Abe et
itat loss not
or
01
itat loss not
or, see Abe et
oi f

(Miller et al.	Hawaii - pasture to	Collected native and non-	Apis were more likely to carry mixed	-	Weak - pollen was
2015)	forest restoration	native bees on flowers and	pollen		removed from bodies
		with pan traps, weighed and	Apis was more likely to forage on	±	rather than the corbitula.
		identified pollen at 36 sites	invasive plants		Mixed samples in Apis
		in mature forest, 16 in	Apis pollinates some native plants	+	could therefore have been
		grassland, 20 in planted			picked up in the hive
		patches, 59 in planted			
		corridors and 30 in old			
		remnant corridors.			
		Conducted over 4 years			
(Mu et al. 2014)	China - alpine	Nectar volume and	Nectar volume is >60% lower at sites	±?	Adequate - it cannot be
	meadow	concentration and	close to apiaries. Common garden		ruled out that there is
		morphological	experiments demonstrate a genetic		other natural variation
		measurements of a native	response		along the transects that
		lotus Saussurea nigrescens	Plants on sites close to apiaries are	±?	result in different plant
		were compared along	taller and produce more flowers and		morphologies. Sites close
		transects varying in the	seeds than those on sites far from		to apiaries have a higher
		distance (1-6km) to 3	apiaries		density of seed predators,
		apiaries. Seedlings were	Overall nectar production per plant	±	which may drive this
		transferred to a common	is likely the same		response
		garden and the same			
		measurements were taken			
(Pan et al. 2013)	China - desert	Quantified the number of	The number of pollen grains	±	Adequate
*abstract only		pollen grains deposited in	deposited did not differ between		
		single visits to native	Apis, Megachile and Amegilla		
		Hedysarum scoparium by 3	species		
		floral visitors			
(Xia et al. 2007,	China - subalpine	Compared pollination during	Seasonal introduction of Apis	-	Adequate - a large effect,
Sun et al. 2013)		peak flowering of a native	resulted in virtual absence of native		but no replication. Fruit-set
		annual herb Pedicularis	and non-native Bombus in 2004		may have been higher that
		densispica in the absence			year for other reasons
		(2002-2003, 2005, 2010-			

		2011) and presence (2004) of <i>Apis</i> (<i>mellifera</i> and <i>cerana</i>) at 1 site. Compared pollen removal and deposition by different bee species after one visit	<i>Apis</i> introduction results in 2x visitations and 70% increase in seed- set Fruit-set was highest in 2004	++	
(Zhang et al. 2015)	China - peach crop (native)	Measured pollen deposition, pollen-tube growth rates, ovary development and fruit set of <i>Prunus persica</i> after single visits by <i>Apis</i> and <i>Bombus patagiatus</i>	Apis depositis less pollen Fruit development time is longer for Apis pollination Ovary growth is longer for Apis pollination Less fruit is produced for Apis	- - -	Adequate
Europe - Native			pollination		
(Albano et al. 2009)	Portugal - strawberries (native)	Counted the number of fertilized ovules after single visits by <i>Apis</i> , another native bee (Halicitdae) and Syrphidae (<i>Eristalis</i>) over 3 months at 1 site. Sample size 14-30 per treatment.	There was no difference in pollination success performed by the various pollinators	±	Adequate
(Alomar et al. 2018)	Spain - almonds	Compared visitation rates in 18 almond fields that varied in surrounding 'natural' areas. Sites were >850m apart. 2 flowering seasons.	Pollinator diversity negatively affected by <i>Apis</i> abundance	-	Weak - correlational
(Cayuela et al. 2011)	Spain - within or close to range of two endangered animal species	Quantified fruit set along transects in 3 native fruiting plants, wildcherry, hawthorn and bilberrys. Half of the samples were bagged to prevent insect pollination	Distance from an apiary was negatively correlated with fruit set in 2 of the 3 (wildcherry, hawthorn, bilberry) native plants These plants are important food for endangered species	+	Weak - correlational

			1	1
			+	
		low densities should be encouraged		
UK - farmland	5 bumblebee <i>Bombus</i>	Colonies close to the apiary gained	-	Weak - poor replication.
	terrestris colonies were	less weight in both years		Authors claim that the
	placed close (5m) and far	Colonies close to the apiary	-	distance between sites
	(1km) from a 50-hive apiary.	produced fewer queens in one year		means that forage
	Males and new queens were	Colonies close to the apiary	-	availability was unchanged.
	counted, weighed and	produced smaller queens in both		Depends on average trip
	measured. Number of flights	years		distance of <i>Bombus.</i>
	were recorded on video. 1	The number of males did not differ	±	Results differed between
	site, experiment was	Male to queen ratio varied	±	years
	replicated 2 years later	extremely between years and sites		
		in one year		
		The number of workers and foraging	±	
		activity did not vary early in the		
		season (data one year only)		
		Later in the season more foraging	±	
		trips were made by colonies away		
		from the apiary, likely due to a		
		difference in the size of colonies		
Germany	Compared reproductive	Reproductive success was higher at	-	Poor - no site replication,
	success of a leafcutter bee	sites without <i>Apis</i>		site specific factors cannot
	at a site with and without			be ruled out
	Apis			
England - dry	Sampling at flowers along	Apis abundance is negatively	-	Weak - correlational,
lowland heaths	transects at 19 lowland	correlated to <i>Bombus</i> abundance at		relationship found only
	heaths, each transect	19 sites sampled once		with poor sampling
	,	No abundance correlation at the 4	±	
	months			
	England - dry	terrestris colonies were placed close (5m) and far (1km) from a 50-hive apiary. Males and new queens were counted, weighed and measured. Number of flights were recorded on video. 1 site, experiment was replicated 2 years laterGermanyCompared reproductive success of a leafcutter bee at a site with and without <i>Apis</i> England - dry lowland heathsSampling at flowers along transects at 19 lowland heaths, each transect sampled once. 4 sites were sampled 8 times over 7	terrestris colonies were placed close (5m) and far (1km) from a 50-hive apiary. Males and new queens were counted, weighed and measured. Number of flights were recorded on video. 1 site, experiment was replicated 2 years laterless weight in both years Colonies close to the apiary produced fewer queens in one year Colonies close to the apiary produced smaller queens in both years The number of males did not differ Male to queen ratio varied extremely between years and sites in one year The number of workers and foraging activity did not vary early in the season (data one year only) Later in the season more foraging trips were made by colonies away from the apiary, likely due to a difference in the size of coloniesGermanyCompared reproductive success of a leafcutter bee at a site with and without ApisReproductive success was higher at sites sithout ApisEngland - dry lowland heathsSampling at flowers along transects at 19 lowland heaths, each transect sampled 0nce. 4 sites were sampled 8 times over 7Apis	UK - farmland5 bumblebee Bombus terrestris colonies were placed close (5m) and far (1km) from a 50-hive apiary. Males and new queens were counted, weighed and measured. Number of flights were recorded on video. 1 site, experiment was replicated 2 years laterColonies close to the apiary produced fewer queens in both years-Males and new queens were counted, weighed and measured. Number of flights were recorded on video. 1 site, experiment was replicated 2 years laterThe number of males did not differ ± Male to queen ratio varied extremely between years and sites in one year The number of workers and foraging activity did not vary early in the season (data one year only) Later in the season more foraging trips were made by colonies difference in the size of colonies±GermanyCompared reproductive success of a leafcutter bee at a site with and without ApisReproductive success was higher at sites without Apis-England - dry lowland heathsSampling at flowers along transect at 19 lowland heaths, each transect sampled 0nce. 4 sites were sampled 8 times over 7Apis abundance correlation at the 4 more intensely sampled sites+

(González-Varo and Vilà 2017)	Spain - orange and berry orchards with surrounding fragmented woodlands	Sampled <i>Apis</i> in woodland surrounding areas of either high or low orange tree density during and after orange flowering over 3 years, using 14-17 sites per year	Apis densities were 3.7 times higher in areas with lots of orange trees than areas with few orange trees Apis densities after orange flowering were 8 times higher in woodland surrounding high numbers of orange trees than areas with low numbers of orange trees. Apis densities reduced by 2.5 times after orange flowering in woodland surrounding low numbers of orange trees. Therefore Apis introduced for crop pollination spillover to natural habitats	± -	Adequate - <i>Apis</i> should be removed after crop flowering
(Goras et al. 2016)	Greece	Gradually increased the number of <i>Apis</i> colonies and measured visitation frequency and duration of pollinators to a shrub <i>Cistus</i> <i>creticus</i> at 12 sites, 6 sites per year	Visitation frequency of other pollinators was unaffected Visitation duration of other pollinators was increased by <i>Apis</i>	± ±	Weak - correlational, up to 8 hives were introduced per site. This is higher that the European average of 3.1 colonies/km ² , but is lower than an apiary.
(Goulson and Sparrow 2009)	Scotland- lowland pasture/arable Unknown if they are native	Compared thorax width of foraging workers four native <i>Bombus</i> species in locations with (10) and without (10) <i>Apis.</i> 10 individuals were collected per site	<i>Bombus</i> workers of all species are smaller in areas with <i>Apis</i>	-	Weak - correlational, worker size varies through the season and the duration of the study was short (22 days) in an attempt to control for this. Colonies may differ in development and hence worker size, thus if more than 1 worker was collected per colony this

(Henry and	France -	Quantified nectar and pollen	Nectar crops reduced with	-	may skew results. The number of brood, and particularly reproductive individuals would better demonstrate competition Weak - correlational, the
Rodet 2018)	Mediterranean scrubland	foraging by <i>Apis</i> and wild bees on rosemary at 60 sites	decreasing distance to an apiary for both wild bees and <i>Apis</i>		frequency of nectar crop and pollen load
		along a transect of variation in apiary size and proximity (10m-4km) over 2 years. There were 28 apiary sites that were not in use the entire period.	Pollen foraging success was lower for <i>Apis</i> caught closer to apiaries, but there was no effect on wild bees Wild bee occurrence decrease with closeness to an apiary and increased <i>Apis</i> density	± -	measurements in unclear, but likely varies depending on resource availability, competition effects on wild bee population measures were not investigated
		entire period.	There is a lag for the effect of occurrence suggesting that wild bee	-	were not investigated
			fitness is decreased around apiaries Distance from nearest apiary was a better predictor of competition than	±	
			colony density To allocate half an area to wild bee conservation apiaries should be spaced at least 3.1km apart	-	
			Apiaries should not be allowed in pristine areas or areas with endangered plant or bee species	-	
			Apiary free years may boost resilience in wild bees	-	
(Herbertsson et al. 2016)	Sweden - agricultural land	Bumblebee abundance was measured at sites with and without <i>Apis</i> colonies in heterogeneous (>4%	<i>Apis</i> reduced (81%) bumblebee density in homogeneous but not heterogeneous landscapes	-	Weak - correlational. Number of <i>Apis</i> hives in treatment sites is unclear but may be low (2)

				1	
		grassland) or homogeneous	Proportional abundance of Bombus	-	
		(<2% grassland) agricultural	species with small foraging ranges		
		landscapes. 5 Apis sites in	was lower at sites with Apis in		
		homogenous landscapes, 4	heterogeneous landscapes		
		Apis sites in heterogeneous	In homogeneous landscapes one	±	
		landscapes, 6 control sites in	bumblebee species was dominant		
		homogeneous landscapes	regardless of Apis presence or		
		and 4 control sites in	absence		
		heterogeneous landscapes.	Number of Apis hives did not	±	
		Control sites were searched	correlate with number of foraging		
		for bee hives in the	Apis		
		surrounding 1.2km radius			
(Hudewenz and	Germany - nature	Floral visits were observed	Wild bee visits were reduced in sites	-	Weak to robust -
Klein 2013)	reserve	along transects at sites with	containing Apis		correlational data backed
		and without (>500m from a	Fewer stem-nesting bee species	-	up with study of
		hive) Apis. Counted the	were found in sites containing Apis		reproductive success, a
		number of wild bee ground-	There was no relationship between	±	significant effect may have
		nests at 10 sites that were	the number of ground nests and		been found under different
		110-1229m from Apis.	distance to the nearest Apis hive		resource conditions
		Compared the number of	Sites with and without Apis did not	±	
		stem-nests at 5 sites with	differ in the number of stem nests		
		Apis hives versus 4 sites at			
		least 500m from Apis hives			
(Hudewenz and	Germany	Red mason bees were kept	Red mason bees visited fewer	-	Weak to adequate -
Klein 2015)		in 12 flight cages with	flowers when Apis were present		correlational data backed
		various densities of Apis (0	Niche breadth reduced with	-	up with study of
		Apis (4 replicates) or 1	increasing Apis density		reproductive success,
		colony with 100 (4	Reproduction was reduced when	-	feeding of Apis colonies
		replicates) or 300 workers (4	Apis were present		reduced competition and
		replicates). Flower			colony size was unrealistic,
		visitations were recorded			use of a flight cage is highly
		and reproductive success			artificial

		was measured as the			
		number of nests. Apis			
		colonies were fed sugar			
		patties throughout			
(Kühn et al. 2006) *only abstract available in English	Germany	Determined seed set after single visits of <i>Apis, Bombus,</i> <i>Megachile lapponica</i> and syrphid flies to <i>Epilobium</i> <i>angustifolium.</i> Recorded floral visits and number of <i>M. lapponica</i> brood cells produced per day before, during and after	No change in number or duration of visits by <i>M. lapponica</i> with increased density of <i>Apis</i> No change in the number of <i>M.</i> <i>lapponica</i> brood cells with increased density of <i>Apis</i> <i>Bombus</i> and syrphid flies were more efficient pollinators than <i>Apis</i> and <i>M.</i> <i>lapponica</i>	± ± -	Adequate - low replication, no control site
		introduction of 15 <i>Apis</i> hives			
(Lindström et al.	Sweden - oilseed	in 2 trials of 14 days Compared wild insect	Apis depresses the densities of wild	_	Weak - correlational
2016)	rape crop	densities in oilseed rape fields with (12 sites in year 1, 11 in year 2) and without (10 fields in year 1, 11 in year 2) <i>Apis</i> . Fields were used once only. 2 <i>Apis</i> colonies per hectare were placed on treatment sites, the density recommended for oilseed rape. Flying and flower-visiting insects were recorded on transects at 3 distances (100, 200, 300m) from the hives	insects		
(Magrach et al.	Spain - orange and	Recorded insect visitors to	After crop flowering Apis presence	-	Weak to adequate - some
20107)	berry orchards	flowers in woodland	doubled in surrounding woodland		aspects correlational

				1	1
	with surrounding	surrounding either high (9	Other pollinators shifted and	-	
	fragmented	sites; 28-57%) or low (8	narrowed their diet		
	woodlands	sites; 0-8%) cover orange	Apis dominated C. crispus after crop	-	
		groves, during and after	flowering, which experiences		
		crop flowering. Surveyed 4	decreased seed set when pollinated		
		times per year for 2 years.	by Apis.		
		Determined the	C. salvifolius has improved	+	
		reproductive success of the	pollination with Apis		
		two most common			
		wildflowers Cistus crispus			
		and <i>C. salvifolius</i> after a			
		fixed number of <i>Apis</i> visits			
		during and after crop			
		flowering.			
(Montero-	Menorca, Spain -	Removed flowers from an	93% of visits to the introduced plant	±	Weak - correlational,
Castaño and Vilà	shrubland	introduced plant Hedysarum	were by <i>Apis</i>		however floral resources
2017)		coronarium and compared	<i>Apis</i> visits were lower to plots that	±	were limiting
		floral visitors with nearby	had introduced plants removed		C
		plots where flowers were	Changes in foraging behaviour of	±	
		not removed. All pollinator	Apis were associated with rewiring		
		species were native.	of plant-pollinator interaction webs,		
		Conducted in spring of 2	probably due to pollinators avoiding		
		years at 3 sites	competition with <i>Apis</i>		
(Monzón et al.	Spain - pear crop	Observed visits and counted	51.8% of Apis pollen/nectar foragers	+	Adequate
2004)		the number of seeds	touch the stigma		
		produced by pears after	19% of Apis nectar foragers touch	-	
		single visits by Apis and	the stigma		
		Osmia cornuta	Fruit set of nectar-foraging <i>Apis</i> was	-	
			half that of pollen/nectar foraging		
			Apis and O. cornuta		
			I	1	

			Fruit set did not differ between	±	
			flowers foraged by O. cornuta and		
			pollen/nectar-foraging Apis		
			There was no difference in inter-row	±	
			flight between Apis and O. cornuta		
(Nielsen et al.	Europe (Leeds &	Used visitation rates to 10	Visitation frequencies of Apis had an	±?	Weak - patch size and
2012)	Reading UK,	plant species to determine if	effect on visitation frequencies of all		density had an effect on
	Gottingen	Apis affect the rest of the	other pollinator groups		results. Plant and
	Germany, Bologna	pollinator community. 6-8	The effect was strong for solitary	±?	pollinator species diversity
	Italy, Tartu Estonia,	sites per plant species	bees and hoverflies but weak for		differs between
	Levos Greece)	visited 3-6 times over a	Bombus		populations
		month. Sampling season	For solitary bees the effect of Apis	-?	
		varied with site/species	was negative in 5, positive in 3 and		
			neutral in the remaining 2 plant		
			species		
			For hoverflies the effect of Apis was	-?	
			negative in 4, positive in 1 and		
			neutral in the remaining 5 plant		
/			species		
(Pechhacker and	Austria - alps	Nesting sites for solitary	No relationship between distance	±	Weak to adequate -
Zeillinger 1994)		bees were placed along a	from the apiary and nest site		correlational resource
*conference		transect from an apiary	occupation		overlap data supported
proceedings		(100-1500m). Pollen was	Pollen plant use overlapped,	±	with nest-site occupation
		collected from brood cells of	particularly for common plants with		
		solitary bees (Osmia rufa,	large amounts of pollen	Ι.	
		Anthidium manicaturr,	No competition between Apis and	±	
		Chelostoma campanularum,	solitary bees		
		Megachile spp.) and by			
		using pollen traps on <i>Apis</i> colonies. Conducted over 3			
		years			

(Steffan-	Germany -	Recorded floral visitors,	Wild bee species richness and	±	Weak to robust -
Dewenter and	fragmented	number of occupied trap	abundance were not associated with		correlational results
Tscharntke	grassland	nests and number of brood	density of Apis colonies		backed up with population
2000)		of wild bees at 15 sites over	Number of brood cells was	±	demographic data
		5 months. The number of	unaffected		
		Apis colonies varied from 3	No correlation between the number	±	
		to 65.	of nests and distance from apiaries		
(Torné-Noguera	Spain - scrubland	Measured rosemary and	Plots close to apiaries had lower wild	-	Weak - correlational
et al. 2016)		thyme flower density, wild	bee biomass due to lower		
		bee abundance and	abundance of large wild bees		
		resource consumption in 21	Apis was the most common visitor to	-	
		plots located at varied	both plants		
		distance (262-5122) from	Apis consumed the most floral	-	
		apiaries	resources		
(Walther-Hellwig	Germany -	0, 1 or 10 <i>Apis</i> colonies were	Placing one Apis colony did not	-	Weak - correlational
et al. 2006)	agricultural	placed on a single site on	change Apis forager density, but		
		some days over a period of 1	placing 10 colonies did		
		month, with colonies being	Short-tongued Bombus foraged	-	
		moved to a location 18km	further away in response to		
		away as required. Wild Apis	increased Apis density		
		could be differentiated from	Long-tongued Bombus changed	-	
		the introduced colonies by	which species of plant they foraged		
		colour. Counted forager	on		
		visits on 4 plants			
(Willmer et al.	Scotland -	Compared pollen on bodies	Apis had less pollen on their bodies	-	Adequate - fruit set not
1994)	raspberry crop	and amount of pollen	than <i>Bombus</i>		investigated
		deposited by Apis and 5	Apis carried less non-raspberry	+	
		Bombus spp.	pollen		
			Apis deposited less pollen than	-	
			Bombus		
(Willmer and	Scotland	Determined number of	Apis deposits less pollen than 2	-	Adequate - pollination
Finlayson 2014)		pollen grains deposited to	Bombus spp.		outcomes not determined

(Kraemer and	Canary Islands -	Geranium sanguineum by Apis and 5 Bombus species in single visits Floral visits were recorded	Apis is a poor pollinator, contacting	_	Weak to adequate - nectar
Schmitt 1997)	semidesert (introduced)	and nectar concentrations measured through the day on a native plant <i>Echium</i> <i>wildpretii</i> at 1 site for 3 days	reproductive organs in 18% of visits, but some other foragers provide no pollination It is assumed that birds do not visit because of nectar depletion by bees (not just <i>Apis</i>), or that other bees excluded birds and they in turn have been excluded by <i>Apis</i>	-	depletion due to <i>Apis</i> is not differentiated, and the nature of relationships between past and current pollinators is conjecture
(Valido et al. 2002)	Canary Islands - sub-alpine zone (introduced)	Observed bird and insect visits to a native plant <i>Echium wildpretii</i> 1 site for 1 month	<i>Apis</i> were the most common visitor late in the season, birds are most common early in the season and native bee abundance is static Commercial <i>Apis</i> were introduced from 5-11 May and the last bird visitor was recorded on 8 May	± -	Weak - poor replication Previous and unpublished work suggests <i>Apis</i> deplete nectar, but due to differences in the timing of studies, bird visitors may have been missed in these other studies. It is suggested that <i>Apis</i> excludes other pollinators, but seasonal bird abundance could be caused by other factors. Comparison of sites with/without <i>Apis</i> or exclusion experiments required
(Valido et al. 2019)	Canary Islands - high-altitudinal	Introduced up to 1,200 Apis colonies over 3 years to a 6	The number of floral visitor species reduced in the presence of <i>Apis</i>	-	<i>Apis</i> were only excluded from 1 portion of the park
-	plateau	ha park. Compared the pre-			in 1 year. There may be

Africa - Native		and-post introduction plant- pollinator network. In the 1st year beekeepers did not install <i>Apis</i> in one section of the park (control). Compared fruit set and seed production in 5 plant species with and without <i>Apis</i> and relative to distance to an apiary in 1 species.	Plant-pollinator networks differed between pre- post- and during <i>Apis</i> presence, being less nested during <i>Apis</i> presence 2 plant species highly visted by <i>Apis</i> (<i>Echium wildpretii, Spartocytisus</i> <i>supranubius</i>) have lower seed production per fruit when <i>Apis</i> colonies are present More fruit are produced by these 2 plants during this period <i>S. supranubius</i> near apiaries produced fewer, heavier seeds There was no effect on the other 3 plants (<i>Erysimum scoparium,</i> <i>Scrophularia glabrata, Adenocarpus</i> <i>viscosus</i>)	- + ±	annual or site-specific effects that are missed as a result. Abundance is correlational. It seems that the total number of seeds per plant may be unchanged for <i>E. wildpretii</i> and <i>S. supranubius,</i> given that there are more fruit but less seeds per fruit
(Geerts and Pauw 2011)	South Africa - fynbos	Compared bird and bee visits to a native plant <i>Promerops cafer</i> at 3 sites with and without added <i>Apis.</i> Sites were >0.7km apart. Fauna abundance was recorded for 4 days before <i>Apis</i> placement and for 4 days at least 3 days after they were placed	Increased <i>Apis</i> stocking rates do not deplete floral resources One of two bird species had a negative correlation with <i>Apis</i> abundance	± -	Weak - correlational, fairly short distance between sites, <i>Apis</i> stocking rates were low
(King et al. 2018)	Kenya - agricultural land adjacent to national parks	Comparison of bee communities on farms with and without <i>Apis</i>	There was little difference in abundance, number of species and community composition of wild bees	±	Weak - correlational

(Tropek et al.	Cameroon -	Recorded Apis and native	There was resource partitioning	±	Weak - correlational
2018)	montane forest	stingless bee visits to 7 plant			
	remnants	species for 3 months for two			
		years over 16 15m transects			
(Hansen et al.	Mauritius - upland	Quantified pollination of	Apis only touch the stigma in 7.5% of	-	Weak - it is unclear if birds
2002)	heath (introduced)	two endemic trees	visits		would stop foraging at this
		Sideroxylon cinereum and S.	Birds remove all nectar from a	±	time in the absence of
		<i>puberulum</i> by <i>Apis</i> and two	flower while Apis removes a portion		Apis, resources may vary
		native birds Zosterops	of nectar		between sites and years,
		borbonicus mauritianus and	Birds stopped foraging prior to Apis	±	thus competition may vary.
		Zosterops chloronothos at 1	depleting nectar		Fruit set and size was only
		site and 1 season per plant			compared between bird
		species. Mesh was used to			and insect-visited and
		exclude birds but not insects			insect-visited flowers, so
					the contribution of Apis is
					unclear
(Norfolk et al.	Egypt - arid	Recorded plant-pollinator	Apis tends to visit widespread plants	±	Poor - low- and high-
2018)	(introduced)	interactions at 42 sites 4	Apis only visits a subset of rare	±	mountain networks vary in
		times over 4 months. Apis	specialist plants of which many had		many factors other than
		were common at low	restricted ranges		Apis abundance, which is
		altitude but rare at high	Apis increases network	±	not controlled for
		altitude	generalization		
			Range restricted plants may be more	±	
			vulnerable to insufficient pollination		
			Simulated removal of <i>Apis</i> from the	±	
			low altitude network decreased		
			nestedness		
(Welsford and	South Africa -	Determined fruit set and	There was no difference in fruit or	±	Adequate
Johnson 2012)	grassland	seed set of native	seed set		
		Wahlenbergia cuspidate and			
		W. krebsii after single visits			

		by <i>Apis</i> and <i>Lipotriches</i> at 2 sites for each species			
Israel - Native					
(Shavit et al. 2009)	Israel	Assessed floral visitation rates of native bees and <i>Apis</i> within <i>Apis</i> native range	Inconsistent between years and plant and native bee species	±	Weak - correlational
(Watts et al. 2013)	Israel - coastal plain (introduced)	Observed floral visitors to a native plant with exclusion experiments for 2 months for 3 years	Main natural pollinator is male eucerine bees but <i>Apis</i> were as effective at pollinating Male native bees carried more pollen in populations free of <i>Apis</i> , inferring pollen depletion by <i>Apis</i> <i>Apis</i> are high removal-low deposition pollinators, while eucerine bees are low removal-low deposition pollinators	+ -	Weak - correlational, difference in pollen counts on male eucerine bees may not be solely due to the absence of <i>Apis</i> - this site has higher genetic diversity and the site is bigger

Works are peer reviewed research unless otherwise noted

References

- Abe, T., S. Makino, and I. Okochi. 2008. Why have endemic pollinators declined on the Ogasawara Islands? Biodiversity and Conservation **17**:1465-1473.
- Aizen, M. A., and P. Feinsinger. 1994. Habitat fragmentation, native insect pollinators, and feral honey bees in Argentine 'Chaco Serrano'. Ecological Applications **4**:378-392.

Aizen, M. A., C. L. Morales, and J. M. Morales. 2008. Invasive mutualists erode native pollination webs. PLoS Biology 6:e31.

- Albano, S., E. Salvado, S. Duarte, A. Mexia, and P. A. V. Borges. 2009. Pollination effectiveness of different strawberry floral visitors in Ribatejo, Portugal: selection of potential pollinators. Part 2. Advances in Horticultural Science **23**:246-253.
- Alomar, D., M. A. González-Estévez, A. Traveset, and A. Lázaro. 2018. The intertwined effects of natural vegetation, local flower community, and pollinator diversity on the production of almond trees. Agriculture, Ecosystems and Environment **264**:34-43.
- Andena, S. R., E. F. Santos, and F. B. Noll. 2012. Taxonomic diversity, niche width and similarity in the use of plant resources by bees (Hymenoptera: Anthophila) in a cerrado area. Journal of Natural History **46**:1663-1687.

- Anna-Aguayo, A. I. S., C. M. Schaffner, J. Golubov, J. López-Portillo, J. García-Franco, G. Herrera-Meza, and A. J. Martínez. 2017. Behavioral repertoires and interactions between *Apis mellifera* (Hymenoptera: Apidae) and the native bee *Lithurgus littoralis* (Hymenoptera: Megachilidae) in flowers of *Opuntia huajuapensis* (Cactaceae) in the Tehuacán desert. Florida Entomologist **100**:396-402.
- Badano, E. I., and C. H. Vergara. 2011. Potential negative effects of exotic honey bees on the diversity of native pollinators and yield of highland coffee plantations. Agricultural and Forest Entomology **13**:365-372.
- Bailey, W. J. 1994. Feral bees: their potential effect on the native insect fauna. Pages 19-28 in R. Siewert, N. Robinson, and P. Horwitz, editors. Impact and control of feral animals in south-western Australia. Conservation Council of Western Australia, Perth, Australia.
- Barthell, J. F., J. M. Randall, R. W. Thorp, and A. M. Wenner. 2001. Promotion of seed set in yellow star-thistle by honey bees: evidence of an invasive mutualism. Ecological Applications **11**:1870-1883.
- Batra, S. W. T. 1999. Native bees (Hymenoptera: Apoidea) in native trees: *Nyssa sylvatica* marsh. (Cornaceae). Proceedings of the Entomological Society of Washington **101**:449-457.
- Beavon, M. A., and D. Kelly. 2012. Invasional meltdown: pollination of the invasive liana *Passiflora tripartita* var. *mollissima* (Plassifloraceae) in New Zealand. New Zealand Journal of Ecology **36**:100-107.
- Bennik, R. M. 2009. The effects of honeybees (*Apis mellifera*) on the biodiversity of manuka (*Leptospermum scoparium*) patches. Massey University, Palmerston North, New Zealand.
- Bernhardt, P. 1987. A comparison of the diversity, density, and foraging behavior of bees and wasps on Australian *Acacia*. Annals of the Missouri Botanical Garden **74**:42-50.
- Bernhardt, P., and S. Walker. 1985. Insect foraging on *Acacia retinodes* var. *retinodes* in Victoria, Australia. International Journal of Entomology **27**:97-101.

Bernhardt, P., and P. H. Weston. 1996. The pollination ecology of *Persoonia* (Froteaceae) in eastern Australia. Journal of Plant Systematics 6:775-804.

Bond, H. W., and W. L. Brown. 1979. The exploitation of floral nectar in *Eucalyptus incrassata* by honeyeaters and honeybees. Oecologia 44:105-111.

- Bortoli, C., and S. Laroca. 1990. Estudo biocenótico em Apoidea (Hymenoptera) de uma área restrita em São Jos dos Pinhais 9Pr, Sul do Brasil), com notas comparativas. Dusenia **15**:1-112.
- Brizola-Bonacina, A., V. M. Arruda, V. V. Alves, J. Chaud-Netto, and L. P. Polatto. 2012. Bee visitors of quaresmeira flowers (*Tibouchina granulosa* Cogn.) in the region of Dourados (MS-Brazil). Sociobiology **59**:1253-1267.
- Bruckman, D., and D. R. Campbell. 2014. Floral neighborhood influences pollinator assemblages and effective pollination in a native plant. Oecologia **176**:465-476.
- Cairns, C. E., R. Villaneueva-Gutiérrez, S. Koptur, and D. B. Bray. 2005. Bee populations, forest disturbance, and Africanization in Mexico. Biotropica **37**:686-692.
- Cane, J. H., and D. Schiffhauer. 2003. Dose-response relationships between pollination and fruiting refine pollinator comparisons for cranberry (*Vaccinium macrocarpon* [Ericaceae]). American Journal of Botany **90**:1425-1432.

- Canto-Aguilar, M. A., and V. Parra-Tabla. 2000. Importance of conserving alternative pollinators: assessing the pollination efficiency of the sqash bee, *Peponapis limitaris* in *Cucurbita moschata* (Cucurbitaceae). Journal of Insect Conservation **4**:203-210.
- Carbonari, V., L. P. Polatto, and V. V. Alves. 2009. Evaluation of the impact on *Pyrostegia venusta* (Bignoniaceae) flowers due to nectar robbery by *Apis mellifera* (Hymenoptera, Apidae). Sociobiology **54**:373-382.
- Carneiro, L. T., and C. F. Martins. 2012. Africanized honey bees pollinate and preempt the pollen of *Spondias mombin* (anacardiaceae) flowers. Apidologie **43**:474-486.
- Cayuela, L., S. Ruiz-Arriaga, and C. P. Ozers. 2011. Honeybees increase fruit set in native plant species important for wildlife conservation. Environmental Management **48**:910-919.
- Celebrezze, T., and D. C. Paton. 2004. Do introduced honeybees (*Apis mellifera*, Hymenoptera) provide full pollination service to bird-adapted Australian plants with small flowers? An experimental study of *Brachyloma ericoides* (Epacridaceae). Austral Ecology **29**:129.136.
- Champerlain, S. A., and R. A. Schlising. 2008. Role of honey bees (Hymenoptera: Apidae) in the pollination biology of a California native plant, *Triteleia laxa* (Asparagales: Themidaceae). Environmental Entomology **37**:808-816.
- Collins, B. G., C. Newland, and P. Briffa. 1984. Nectar utilization and pollination by Australian honeyeaters and insects visiting *Calothamnus quadrifidus* (Myrtaceae). Australian Journal of Ecology **9**:353-365.
- Cortopassi-Laurino, M., and M. Ramalho. 1988. Pollen harvest by Africanized *Apis mellifera* and *Trigona spinipes* in São Paulo botanical and ecological views. Apidologie **19**:1-24.
- de Menezes Pedro, S. R., and J. M. F. de Camargo. 1991. Interactions on floral resources between the Africanized honey bee *Apis mellifera* L and the native bee community (Hymenoptera: Apoidea) in a natural "cerrado" ecosystem in southeast Brazil. Apidologie **22**:397-415.
- Dick, C. W. 2001. Genetic rescue of remnant tropical trees by an alien pollinator. Proceedings of the Royal Society of London B **268**:2391-2396.
- Dick, C. W., G. Etchelecu, and F. Austerlitz. 2003. Pollen dispersal of tropical trees (*Dinizia excelsa*: Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian fainforest. Molecular Ecology **12**:753-764.
- Dieringer, G. 1992. Pollinator effectiveness and seed set in populations of *Agalinis strictifolia* (Scrophulariaceae). American Journal of Botany **79**:1018-1023.
- do Carmo, R. M., E. V. Franceschinelli, and A. da Silveira. 2004. Introduced honeybees (*Apis mellifera*) reduce pollination success without affect the floaral resource taken by native pollinators. Biotropica **36**:371-376.
- Elbgami, T., W. E. Kunin, W. O. H. Hughes, and J. C. Biesmeijer. 2014. The effect of proximity to a honeybee apiary on bumblebee colony fitness, development, and performance. Apidologie **45**:504-513.
- England, P. R., F. Beynon, D. J. Ayre, and R. J. Wheland. 2001. A molecular genetic assessment of mating-system variation in a naturally bird-pollinated shrub: contributions from birds and introduced honeybees. Conservation Biology **15**:1645-1655.
- Evertz, S. 1995. Inter-specific competition amongst honey-bees and solitary wild bees. Natur und Landscaft **70**:165-172.
- Fagua, J. C., and J. D. Ackerman. 2011. Consequences of floral visits by ants and invasive honeybees to the hummingbird-pollinated, Caribbean cactus *Melocactus intortus*. Plant Species Biology **26**:193-204.

- Faria, R. R., and A. C. Araujo. 2015. Fruit set of distylous *Psychotria carthagenesis* Jacq. (Rubiaceae) mediated by *Apis mellifera* (Apidae) and species of *Augochloropsis* (Halictidae). Acta Botanica Brasilica **29**:278-281.
- Forup, M. L., and J. Memmott. 2005. The relationship between the abundances of bumblebees and honeybees in a native habitat. Ecological Entomology **30**:47-57.
- Franco, E. L., C. M. L. Aguiar, V. S. Ferreira, and P. L. de Oliveira-Rebouças. 2009. Plant use and niche overlap between the introduced honey bee (*Apis mellifera*) and the native bumblebee (*Bombus atratus*) (Hymenoptera: Apidae) in an area of tropical mountain vegetation in northeastern Brazil. Sociobiology 53:141-150.
- Freitas, B. M., and R. J. Paxton. 1998. A comparison of two pollinators: the introduced honey bee *Apis mellifera* and an indigenous bee *Centris tarsata* on cashew *Anacardium occidentales* in its native range of NE Brazil. Journal of Applied Ecology **35**:109121.
- Fumero-Cabán, J. J., and E. J. Meléndez-Ackerman. 2007. Relative pollination effectiveness of floral visitors of *Pitcairnia angustifolia* (Bromeliaceae). American Journal of Botany **94**:419-424.
- Geerts, S., and A. Pauw. 2011. Farming with native bees (*Apis mellifera* subsp. *capensis* Esch.) has varied effects on nectar-feeding bird communities in South African fynbos vegetation. Population Ecolony **53**:333-339.
- Giannini, T. C., L. A. Garibaldi, A. L. Acosta, J. S. Silva, K. P. Maia, A. M. Saraiva, P. R. Guimarães, and A. M. P. Kleinert. 2015. Native and non-native supergeneralist bee species have different effects on plant-bee networks. PLoS One **10**:e0137198.
- Gillespie, S., and E. Elle. 2018. Non-native plants affect generalist pollinator diet overlap and foraging behavior indirectly, via impacts on native plant abundance. Biologicial Invasions **20**:3179-3191.
- Ginsberg, H. S. 1983. Foraging ecology of bees in an old field. Ecology 64:165-175.
- González-Varo, J. P., and M. Vilà. 2017. Spillover of managed honeybees from mass-flowering crops into natural habitats. Biological Conservation **212**:376-382.
- Goras, G., C. Tananaki, M. Dimou, T. Tscheulin, T. Petanidou, and A. Thrasyvoulou. 2016. Impact of honey bee (*Apis mellifera* L.) density on wild bee foraging behaviour. Journal of Apicultural Science **60**:49-61.
- Goulson, D., and L. C. Derwent. 2004. Synergistic interactions between an exotic honeybee and an exotic weed: pollination of *Lantana camara* in Australia. Weed Research **44**:195-202.
- Goulson, D., and E. L. Rotheray. 2012. Population dynamics of the invasive weed *Lupinus arboreus* in Tasmania, and interactions with two non-native pollinators. Weed Research **52**:535-541.
- Goulson, D., and K. R. Sparrow. 2009. Evidence for competition between honeybees and bumblebees; effects on bumblebee worker size. Journal of Insect Conservation **13**:177-181.
- Goulson, D., J. C. Stout, and A. R. Kells. 2002. Do exotic bumblebees and honeybees compete with native flower-visiting insects in Tasmania. Journal of Insect Conservation 6:179-189.
- Gross, C. L. 1993. The breeding system and pollinators of *Melasoma affine* (Melastomataceae); a pioneer shrub in tropical Australia. Biotropica **25**:468-474.

- Gross, C. L. 2001. The effect of introduced honeybees on native bee visitation and fruit-set in *Aillwynia juniperina* (Fabaceae) in a fragmented ecosystem. Biological Conservation **102**:89-95.
- Gross, C. L., and D. Mackay. 1998. Honeybees reduce fitness in the pioneer shrub *Melastoma affine* (Melastomataceae). Biological Conservation **86**:169-178.
- Hanna, C., D. Foote, and C. Kremen. 2013. Invasive species management restores a plant-pollinator mutualism in Hawaii. Journal of Applied Ecology **50**:147-155.
- Hansen, D. M., J. M. Olesen, and C. G. Jones. 2002. Trees, birds and bees in Mauritius: exploitative competition between introduced honey bees and endemic nectarivorous birds? Journal of Biogeography **29**:721-734.
- Heard, T. A. 1994. Behaviour and pollinator efficiency of stingless bees and honey bees on macadamia flowers. Journal of Apicultural Research **33**:191-198.
- Henry, M., and G. Rodet. 2018. Controlling the impacts of the managed honeybee on wild bees in protected areas. Scientific Reports 8:9308.
- Herbertsson, L., S. A. M. Lindström, M. Rundlöf, R. Bommarco, and H. G. Smith. 2016. Competition between managed honeybees and wild bumblebees depends on landscape context. Basic and Applied Ecology **17**:609-616.
- Hermansen, T. D., D. R. Britton, D. J. Ayre, and T. E. Minchinton. 2014. Identifying the real pollinators? Exotic honeybees are the dominant flower visitors and only effective pollinators of *Avicennia marina* in Australian temperate mangroves. Estuaries and Coasts **37**:621-635.
- Hingston, A. B., B. M. Potts, and P. B. McQuillan. 2004a. Pollination services provided by various size classes of flower visitors to *Eucalyptus globullus* spp. *globulus* (Myrtaceae). Australian Journal of Botany **52**:353-369.
- Hingston, A. B., B. M. Potts, and P. B. McQuillan. 2004b. The swift parrot, *Lathamus discolor* (Psittacidae), social bees (Apidae) and native insects as pollinators of *Eucalyptus globulus* ssp. *globulus* (Myrtaceae). Australian Journal of Botany **52**:371-379.
- Horskins, K., and V. B. Turner. 1999. Resource use and foraging patterns of honeybees, *Apis mellifera*, and native insects on flowers of *Eucalyptus costata*. Australian Journal of Ecology **24**:221-227.
- House, S. M. 1989. Pollen movement to flowering canopies of pistillate individuals of three rain forest tree species in tropical Australia. Australian Journal of Ecology **14**:77-94.
- Howell, V., and L. K. Jesson. 2013. The effect of bird and bee visitation on pollination and reproductive success in *Phormium tenax*. New Zealand Journal of Botany **51**:194-205.
- Hudewenz, A., and A. M. Klein. 2013. Competition between honey bees and wild bees and the role of nesting resources in a nature reserve. Journal of Insect Conservation **17**:1275-1283.
- Hudewenz, A., and A. M. Klein. 2015. Red mason bees cannot compete with honey bees for floral resources in a cage experiment. Ecology and Evolution **5**:5049-5056.
- Hung, K. L. J., J. M. Kingston, A. Lee, D. A. Holway, and J. R. Kohn. 2019. Non-native honey bees disproportionately dominate the most abundant floral resources in a biodiversity hotspot. Proceedings of the Royal Society of London B **286**:20182901.

- Iwasaki, J. M., K. J. M. Dickinson, B. I. P. Barratt, A. R. Mercer, T. W. D. Jowett, and J. M. Lord. 2018. Floral usage partitioning and competition between social (*Apis mellifera, Bombus terrestris*) and solitary bees in New Zealand: niche partitioning via floral preferences? Austral Ecology 43:937-948.
- Javorek, S. K., K. E. Mackenzie, and S. P. Vander Kloet. 2002. Comparative pollination effectiveness among bees (Hymenoptera: Apoidea) on lowbush blueberry (Ericaceae: *Vaccinium angustifolium*). Annals of the Entomological Society of America **95**:345-351.
- Jean, R. P. 2005. Quantifying a rare event: pollen theft by honey bees from bumble bees and other bees (Apoidea: Apidae, Megacchilidae) foraging at flowers. Journal of the Kansas Entomological Society **78**:172-176.
- Jha, S., and J. H. Vandermeer. 2009a. Contrasting bee foraging in response to resource scale and local habitat management. Oikos **118**:1174-1180.
- Jha, S., and J. H. Vandermeer. 2009b. Contrasting foraging patterns for Africanized honeybees, native bees and native wasps in a tropical agroforestry landscape. Journal of Tropical Ecology **25**:13-22.
- Johnson, A. L., and T.-L. Ashman. 2019. Consequences of invasion for pollen transfer and pollination revealed in a tropical island ecosystem. New Phytologist **221**:142-154.
- Junker, R. R., R. Bleil, C. C. Daehler, and N. Blüthgen. 2010. Intra-floral resource partitioning between endemic and invasive flower visitors: consequences for pollinator effectiveness. Ecological Entomology **35**:760-767.
- Kato, M. 1992. Endangered bee fauna and its hosts in the Ogasawara Islands. Japanese Journal of Entomology **60**:487-494.
- Kato, M., and A. Kawakita. 2004. Plant-pollinator interactions in New Caledonia influenced by introduced honey bees. American Journal of Botany **91**:1814-1827.
- Kato, M., A. Shibata, T. Yasui, and H. Nagamasu. 1999. Impact of introduced honeybees, *Apis mellifera*, upon native bee communities in the Bonin (Ogasawara Islands). Researches on Population Ecology **41**:217-228.
- Keys, R. N., S. L. Buchmann, and S. E. Smith. 1995. Pollination effectiveness and pollination efficiency of insects foraging *Prosopis velutina* in Southeastern Arizona. Journal of Applied Ecology **32**:519-527.
- King, L. E., E. Serem, and L. Russon. 2018. Minimal effect of honey beehive fences on native bee diversity and abundance at the farm scale during the dry season in southern Keya.
- Kraemer, M., and U. Schmitt. 1997. Nectar production patterns and pollination of the Canarian endemic *Echium wildpretii* Pearson ex Hook. fil. Flora **192**:217-221.
- Kremen, C., N. M. Williams, and R. W. Thorp. 2002. Crop pollination from native bees at risk from agricultural intensification. Proceedings of the National Academy of Science **99**:16812-16816.
- Krend, K., and C. Murphy. 2003. The relationship of *Apis mellifera* with exotic and native plants in Boulder County, Colorado. American Journal of Undergraduate Research **2**:5-11.
- Kühn, J., A. Hamm, M. Schindler, and D. Wittmann. 2006. Ressourcenaufteilung zwischen der oligolektischen Blattschneiderbiene *Megachile lapponica* L. (Hymenoptera. Apiformes) und anderen Blütenbesuchern am schmalblättrigen Weidenröschen (*Epilobium angustifolium*, Onagraceae). Mitteilungen der Deutschen Gesellschaft fuer Allgemeine und Angewandte Entomologie **15**:389-391.

- Laroca, S., and M. L. Winston. 1978. Interaction between *Apis* and *Bombus* (Hymenoptera: Apidae) on the flowers of tall thistle; honeybees gather pollen from bodies of bumblebees. Journal of the Kansas Entomological Society **51**:274-275.
- Lindström, S. A. M., L. Herbertsson, M. Rundlöf, R. Bommarco, and H. G. Smith. 2016. Experimental evidence that honeybees depress wild insect densities in a flowering crop. Proceedings of the Royal Society of London B **283**:20161641.
- Liu, W., Y. Wang, Q. Chen, and S. Yu. 20103. Pollination of invasive *Eichhornia crassipes* (Pontederiaceae) by the introduced honeybee (*Apis mellifera* L.) in South China. Plant Systematics and Evolution **299**:817-825.
- Lomov, B., D. G. Keith, and D. F. Hochuli. 2010. Pollination and plant reproductive success in restored urban landscapes dominated by a pervasive exotic pollinator. Landscape and Urban Planning **96**:232-239.
- Macias-Macias, O., J. Chuc, P. Ancona-Xiu, O. Cauich, and J. J. G. Quezada-Euán. 2009. Contribution of native bees and Africanized honey bees (Hymenoptera: Apoidea0 to Solanaceae crop pollination in tropical México. Journal of Applied Entomology **133**:456-465.
- Magrach, A., J. P. González-Varo, M. Boiffier, M. Vilà, and I. Bartomeus. 20107. Honeybee spillover reshuffles pollinator diets and affects plant reproductive success. Nature Ecology and Evolution 1:1299-1307.
- Mallick, S. A., and M. M. Driessen. 2009. Impacts of hive honeybees on Tasmanian leatherwood *Eucryphia lucida* Labill. (Eucryphiaceae). Austral Ecology **34**:185-195.
- Markwell, T. J., D. Kelly, and K. W. Duncan. 1993. Competition between honey bees (*Apis mellifera*) and wasps (*Vespula* spp.) in honeydew beech (*Nothofagus solandri* var. *solandri*) forest. New Zealand Journal of Ecology **17**:85-93.
- Martins, A. C., R. B. Gonçalves, and G. A. Melo. 2013. Changes in wild bee fauna of a grassland in Brazil reveal negative effects associated with growing urbanization during the last 40 years. Zoologia **30**:157-176.
- McGregor, S. E., S. M. Alcorn, E. B. Kurtz, and G. D. Butler. 1959. Bee visitors to saguaro flowers. Journal of Economic Entomology 52:1002-1004.
- Miller, A. E., B. J. Brosi, K. Magnacca, G. C. Daily, and L. Pejchar. 2015. Pollen carried by native and nonnative bees in the large-scale reforestation of pastureland in Hawai'i: implications for pollination. Pacific Science **69**:67-79.
- Minckley, R. L., J. H. Cane, L. Kervin, and T. H. Roulston. 1999. Spatial predictability and resource specialization of bees (Hymenoptera: Apoidea) at a superabundant, widespread resource. Biological Journal of the Linnean Society **67**:119-147.
- Minckley, R. L., J. H. Cane, L. Kervin, and D. Yanega. 2003. Biological impediments to measures of competition among introduced honey bees and desert bees. Journal of the Kansas Entomological Society **76**:306-319.
- Moncur, M. W., R. Charles, and G. J. Kleinschmidt. 1993. Can honeybees increase seed production in blue gum, *Eucalyptus globulus*? Australiasian Beekeeper **December**:248-253.
- Moncur, M. W., A. Mitchell, Y. Fripp, and G. J. Kleinschmidt. 1995. The role of honey bees (*Apis mellifera*) in eucalypt and acacia seed production areas. Commonwealth Forestry Review **74**:350-354.
- Montero-Castaño, A., and M. Vilà. 2017. Influence of the honeybee and trait similarity on the effect of a non-native plant on pollination and network rewiring. Functional Ecology **31**:142-152.

- Monzón, V. H., J. Bosch, and J. Retana. 2004. Foraging behavior and pollinating effectiveness of *Osmia cornuta* (Hymenoptera: Megachilidae) and *Apis mellifera* (Hymenoptera: Apidea) on "Comice" pear. Apidologie **35**:575-585.
- Morales, C. L., and M. A. Aizen. 2006. Invasive mutualisms and the structure of plant-pollinator interactions in the temperate forests of north-west Patagonia, Argentina. Journal of Ecology **94**:171-180.
- Morandin, L. A., and C. Kremen. 2013. Bee preference for native versus exotic plants in restored agricultural hedgerows. Restoration Ecology **21**:26-32.
- Mu, J., Y. Peng, X. Xi, X. Wu, J. N. Griffin, K. J. Niklas, and S. Sun. 2014. Domesticated honey bee evolutionarily reduce flower nectar volume in a Tibetan lotus. Ecology **95**:3161-3172.
- Murphy, C., and A. Robertson. 2000. Preliminary study of the effects of honey bees (*Apis mellifera*) in Tongariro National Park. Department of Conservation, Wellington, New Zealand.
- Nielsen, A., J. Dauber, W. E. Kunin, E. Lamborn, B. Jauker, M. Moora, S. G. Potts, T. Reitan, S. Roberts, V. Sõber, J. Settele, I. Steffan-Dewenter, J. C. Stout, T. Tscheulin, M. Vaitis, D. Vivarelli, J. C. Biesmeijer, and T. Petanidou. 2012. Pollinator community responses to the spatial population structure of wild plants: a pan-European approach. Basic and Applied Ecology **13**:489-499.
- Norfolk, O., F. Gilbert, and M. P. Eichhorn. 2018. Alien honeybees increase pollination risks for range-restricted plants. Diversity and Distributions **24**:705-713.
- Osorio-Beristain, M., C. A. Domínguez, L. E. Eguiarte, and B. Benrey. 1997. Pollination efficiency of native and invading Africanized bees in the tropical dry forest annual plant, *Kallstroemia grandiflora* Torr ex Gray. Apidologie **28**:11-16.
- Ott, D., P. Hühn, and R. Claßen-Bockhoff. 2016. Salvia apiana a carpenter bee flower? Flora **221**:82-91.
- Paini, D. R., and J. D. Roberts. 2005. Commercial honey bees (*Apis mellifera*) reduce the fecundity of an Australian native bee (*Hylaeus alcyoneus*). Biological Conservation **123**:103-112.
- Paini, D. R., M. R. Williams, and J. D. Roberts. 2005. No short-term impact of honey bees on the reproductive success of an Australian native bee. Apidologie **36**:613-621.
- Pan, C. C., L. D. Liu, H. L. Zhao, Y. L. Hou, and L. Zhang. 2013. Pollination strategy of *Hedysarum scoparium* Fisch et Mey (Fabaceae) in a dry habitat measured with pollination effectiveness and pollinator importance. Polish Journal of Ecology **61**:605-611.
- Park, M. G., R. A. Raguso, J. E. Losey, and B. N. Danforth. 2016. Per-visit pollinator performance and regional importance of wild *Bombus* and *Andrena* (*Melandrena*) compared to the managed honey bee in New York apple orchards. Apidologie **47**:145-160.
- Paton, D. C. 1993. Honeybees in the Australian environment. BioScience 43:95-103.
- Paton, D. C. 1999. Impact of commercial honeybees on flora and fauna in Ngarkat Conservation Park. Canberra, Australia.
- Paton, D. C. 2008. Securing long-term floral resources for the honeybee industry. Canberra, Australia.
- Pattemore, D. E., and S. H. Anderson. 2013. Severe pollen limitaion in populations of the New Zealand shrub *Alseuosmia macrophylla* (Alseuosmiaceae) can be attributed to the loss of pollinating bird species. Austral Ecology **38**:95-102.

- Paynter, Q., A. Main, A. H. Gourlay, P. G. Peterson, S. V. Fowler, and Y. M. Buckley. 2010. Disruption of an exotic mutualism can improve management of an invasive plant: varroa mite, honeybees and biological control of Scotch broom *Cytisus scoparius* in New Zealand. Journal of Applied Ecology **47**:309-317.
- Pechhacker, H., and C. Zeillinger. 1994. Competition between honeybees and solitary bees. Apidologie 25:492-493.
- Percival, M. 1974. Floral ecology of coastal scrub in Southeast Jamaica. Biotropica **6**:104-129.
- Pick, R. A., and C. Schlindwein. 2011. Pollen partitioning of three species of Convolvulaceae among oligolectic bees in the Caatinga of Brazil. Plant Systematics and Evolution **293**:147-159.
- Pinkus-Rendon, M. A., V. Parra-Tabla, and V. Meléndez-Ramírez. 2005. Floral resource use and interactions between *Apis mellifera* and native bees in cucurbit crops in Yucatán, México. Canadian Entomologist **137**:441-449.
- Pleasants, J. M. 1981. Bumblebee response to variation in nectar availability. Ecology 62:1648-1661.
- Polatto, L. P., and J. Chaud-Netto. 2013. Influence of *Apis mellifera* L. (Hymenoptera: Apidae) on the use of the most abundant and attractive floral resources in a plant community. Neotropical Entomology **42**:576-587.
- Polatto, L. P., J. Chaud-Netto, J. C. S. Dutra, and V. V. Alves. 2012. Exploitation of floral resources on *Sparattosperma leucanthum* (Bignoniaceae): foraging activity of the pollinators and the nectar and pollen thieves. Acta Ethology **15**:119-126.
- Pyke, G. H., and L. Balzer. 1985. The effects of the introduced honey-bee on Australian native bees. New South Wales National Parks Wildlife Service, Occasional Papers **7**.
- Rader, R., B. G. Howlett, S. A. Cunningham, D. A. Westcott, L. E. Newstrom-Lloyd, M. K. Walker, D. A. J. Teulon, and W. Edwards. 2009. Alternative pollinator taxa are equally efficient but not as effective as the honeybee in a mass flowering crop. Journal of Applied Ecology **46**:1080-1087.
- Rader, R., J. Reilly, I. Bartomeus, and R. Winfree. 2013. Native bees buffer the negative impact of climate warming on honey bee pollination of watermelon crops. Global Change Biology **19**:3103-3110.
- Ramsey, M. W. 1988. Differences in pollinator effectiveness of birds and insects visiting *Banksia menziesii* (Proteaceae). Oecologia **76**:119-124.
- Richardson, M. L., C. P. Keathley, and C. L. Peterson. 2016. Breeding system of the critically endangered Lakela's Mint and influence of plant height on pollinators and seed output. Population Ecology **58**:277-284.
- Rogers, S. R., P. Cajamarca, D. R. Tarpy, and H. J. Burrack. 2013. Honey bees and bumble bees respond differently to inter- and intra-specific encounters. Apidologie **44**.
- Romero, M. J., and J. J. G. Quezada-Euán. 2013. Pollinators in biofuel agricultural systems: the diversity and performance of bees (Hymenoptera: Apoidea) on *Jatropha curcas* in Mexico. Apidologie **44**:419-429.
- Roubik, D. W. 1978. Competitive interactions between neotroprical pollinators and Africanized honey bees. Science **201**:1030-1032.
- Roubik, D. W. 1980. Foraging behavior of competing Africanized honeybees and stingless bees. Ecology **61**:836-845.
- Roubik, D. W. 1981. Comparative foraging behavior of *Apis mellifera* and *Trigona corvina* (Hymenoptera: Apidea) on *Baltimora recta* (Compositae). Revista de Biologia Tropical **29**:177-183.
- Roubik, D. W. 1983. Experimental community studies: time-series tests of competition between African and neotropical bees. Ecology 64:971-978.

- Roubik, D. W., J. E. Moreno, C. Vergara, and D. Wittmann. 1986. Sporadic food competition with the African honey bee: projected impact on neotropical social bees. Journal of Tropical Ecology **2**:97-111.
- Roubik, D. W., and R. Villaneueva-Gutiérrez. 2009. Invasive Africanized honey bee impact on native solitary bees: a pollen resource and trap nest analysis. Biological Journal of the Linnean Society **98**:152-160.
- Roubik, D. W., and H. Wolda. 2001. Do competing honey bees matter? Dynamics and abundance of native bees before and after honey bee invasion. Population Ecolony **43**:53-62.
- Sakagami, S. F., S. Laroca, and J. S. Moure. 1967. Wild bee biocenotics in So Jos dos Pinhais (PR), South Brazil, preliminary report. Journal of the Faculty of Science Hokkaido University Series VI **16**:253-291.

Sanguinetti, A., and R. B. Singer. 2014. Invasive bees promote high reproductive success in Andean orchids. Biological Conservation 175:10-20.

- Santos, G. M. M., C. M. L. Aguiar, J. Genini, C. F. Martins, F. C. V. Zanella, and M. A. R. Mello. 2012. Invasive Africanized honeybees change the structure of native pollination networks in Brazil. Biological Invasions **14**:2369-2378.
- Schaffer, W. M., D. B. Jensen, D. E. Hobbs, J. Gurevitch, J. R. Todd, and M. V. Schaffer. 1979. Competition, foraging energetics, and the cost of sociality in three species of bees. Ecology **60**:976-987.
- Schaffer, W. M., D. W. Zeh, S. L. Buchmann, S. Kleinhans, M. V. Schaffer, and J. Antrim. 1983. Competition for nectar between introduced honey bees and native North American bees and ants. Ecology **64**:564-577.

Schwarz, M. P., P. F. Kukuk, and C. L. Gross. 1991. Assessment of competition between honeybees and native bees. World Wild-life Fund Australia, Sydney, NSW, Australia.

- Shavit, O., A. Dafni, and G. Ne'eman. 2009. Competition between honeybees (*Apis mellifera*) and native solitary bees in the Mediterranean region of Israel implications for conservation. Israel Journal of Plant Sciences **57**:171-183.
- Simpson, S. R., C. L. Gross, and L. X. Silberbauer. 2005. Broom and honeybees in Australia: an alien liaison. Plant Biology 7:541-548.
- Spessa, A. 1999. The behavioural and population ecology of an Australian native bee, *Amphylaeus morosus* Smith (Colletidae: Hylaeinae). Australian National University, Canberra, Australian Capital Teritory, Australia.
- Steffan-Dewenter, I., and T. Tscharntke. 2000. Resource overlap and possible competition between honey bees and wild bees in central Europe. Oecologia **122**:288-296.
- Stimec, J., C. D. ScottDupree, and J. H. McAndrews. 1997. Honey bee, *Apis mellifera*, pollen foraging in southern Ontario. Canadian Field-Naturalist **111**:454-456.
- Stoepler, T. M., A. Edge, A. Steel, R. L. O'Quinn, and M. Fishbein. 2012. Differential pollinator effectiveness and importance in a milkweed (*Asclepias,* Apocynaceae) hybrid zone. American Journal of Botany **99**:448-458.
- Stout, J. C., A. R. Kells, and D. Goulson. 2002. Pollination of the invasive exotic shrub *Lupinus abroreus* (Fabaceae) by introduced bees in Tasmania. Biological Conservation **106**:425-434.
- Sugden, E. A., and G. H. Pyke. 1991. Effects of honey bees on colonies of *Exoneura asimillima*, an Australian native bee. Australian Journal of Ecology **16**:171-181.

- Sun, S. G., S. Q. Huang, and Y. H. Guo. 2013. Pollinator shift to managed honeybees enhances reproductive output in a bumblebee-pollinated plant. Plant Systematics and Evolution **299**:139-150.
- Taylor, G., and R. J. Wheland. 1994. Can honeybees pollinate *Grevillea*? Australian Zoologist 24:193-196.
- Telleria, M. C. 1993. Flowering and pollen collection by the honeybee (*Apis mellifera* L.var *ligustica*) in the Pampas region of Argentina. Apidologie **24**:109-120.
- Tepedino, V. J. 1981. The pollination efficiency of the squash bee (*Pepanapis pruinosa*) the honey bee (*Apis mellifera*) on summer squash (*Cucurbita pepo*). Journal of the Kansas Entomological Society **54**:359-377.
- Tepedino, V. J., D. G. Alston, B. A. Bradley, T. R. Toler, and T. L. Griswold. 2007. Orchard pollination in Capitol Reef National Park, Utah, USA. Honey bees or native bees? Biodiversity and Conservation **16**:3083-3094.
- Thoenes, S. C. 1993. Fatal attraction of certain large-bodied native bees to honey bee colonies. Journal of the Kansas Entomological Society **66**:210-213.
- Thomson, D. 2004. Competitive interactions between the invasive European honey bee and native bumble bees. Ecology **85**:458-470.
- Thomson, D. M. 2006. Detecting the effects of introduced species: a case study of competition between Apis and Bombus. Oikos 114:407-418.
- Thomson, D. M. 2016. Local bumble bee decline linked to recovery of honey bees, drought effects on floral resources. Ecology Letters 19:1247-1255.
- Thomson, J. D., and K. Goodell. 2001. Pollen removal and deposition by honeybee and bumblebee visitors to apple and almond flowers. Journal of Applied Ecology **38**:1032-1044.
- Thorp, R. W., and D. L. Briggs. 1980. Bees collecting pollen from other bees (Hymenoptera: Apoidea). Journal of the Kansas Entomological Society **53**:166-170.
- Torné-Noguera, A., A. Rodrigo, S. Osorio, and J. Bosch. 2016. Collateral effects of beekeeping: impacts on pollen-nectar resources and wild bee communities. Basic and Applied Ecology **17**:199-209.
- Tropek, R., E. Padyšáková, and Š. Janečk. 2018. Floral resources partitioning by two co-occuring eusocial bees in an Afromontane landscape. Sociobiology **65**:527-530.
- Valido, A., Y. L. Dupont, and D. M. Hansen. 2002. Native birds and insects, and introduced honey bees visiting *Echium wildpretii* (Boraginaceae) in the Canary Islands. Acta Oecologica **23**:413-419.
- Valido, A., M. C. Rodríguez-Rodríguez, and P. Jordano. 2019. Honeybees disrupt the structure and functionality of plant-pollinator networks. Scientific Reports **9**:4711.
- Vaughton, G. 1992. Effectiveness of nectarivorous birds and honeybees as pollinators of *Banksia spinulosa* (Proteaceae). Australian Journal of Ecology **17**:43-50.
- Vaughton, G. 1996. Pollination disruption by European honeybees in the Australian bird-pollinated shrub *Grevillea barklyana* (Proteaceae). Plant Systematics and Evolution **200**:89-100.
- Walther-Hellwig, K., G. Fokul, R. Frankl, R. Büchler, K. Ekschmitt, and V. Wolters. 2006. Increased density of honeybee colonies affects foraging bumblebees. Apidologie **37**:517-532.

- Watts, S., C. F. Dormann, G. A. M. M., and J. Ollerton. 2016. The influence of floral traits on specialization and modularity of plant-pollinator networks in a biodiversity hotspot in the Peruvian Andes. Annals of Botany **118**:415-429.
- Watts, S., D. H. Ovalle, M. M. Herrera, and J. Ollerton. 2012. Pollinator effectiveness of native and non-native flower visitors to an apparently generalist Andean shrub, *Duranta mandonii* (Verbenaceae). Plant Species Biology **27**:147-158.
- Watts, S., Y. Sapir, B. Segal, and A. Dafni. 2013. The endangered *Iris atropurpurea* (Iridaceae) in Israel: honey-bees, night-sheltering male bees and female solitary bees as pollinators. Annals of Botany **111**:395-407.
- Welsford, M. R., and S. D. Johnson. 2012. Solitary and social bees as pollinators of *Wahlenbergia* (Campanulaceae): single-visit effectiveness, overnight sheltering and responses to flower colour. Anthropod-Plant Interactions **6**:1-14.
- Whelan, R. J., D. J. Ayre, and F. M. Beynon. 2009. The birds and the bees: pollinator behaviour and variation in the mating system of the rare shrub *Grevillea macleayana*. Annals of Botany **103**:1395-1401.
- Williams, G. R., and P. Adam. 1997. The composition of the bee (Apoidea: Hymenoptera) fauna visiting flowering trees in New South Wales lowland subtropical rainforest remnants. Proceedings of the Linnean Society New South Wales **118**:69-95.
- Willmer, P. G., A. A. M. Bataw, and J. P. Hughes. 1994. The superiority of bumblebees to honeybees as pollinators: insect visits to raspberry flowers. Ecological Entomology **19**:271-284.
- Willmer, P. G., and K. Finlayson. 2014. Big bees do a better job: intraspecific size variation influences pollination effectiveness. Journal of Pollination Ecology **14**:244-254.
- Wills, R. T., M. N. Lyons, and D. T. Bell. 1990. The European honey bee in Western Australian kwongan: foraging preferences and some implications for management. Proceedings of the Ecological Society of Australia **16**:167-176.
- Wilms, W., V. L. Imperatriz-Fonseca, and W. Engels. 1996. Resource partitioning between highly eusocial bees and possible impact of the introduced Africanized honey bee on native stingless bees in the Brazilian Atlantic rainforest. Studies in Neotropical Fauna and Environment **31**:137-151.
- Wilms, W., and B. Wiechers. 1997. Floral resource partitioning between native *Melipona* bees and the introduced Africanized honey bee in the Brazilian Atlantic rain forest. Apidologie **28**:339-355.
- Wilson, P., and J. D. Thomson. 1991. Heterogeneity among floral visitors leads to discordance between removal and deposition of pollen. Ecology **72**:1503-1507.
- Wist, T. J., and A. R. Davis. 2013. Evaluation of inflorescence visitors as pollinators of *Echinacea angustifolia* (Asteraceae): comparison of techniques. Journal of Economic Entomology **106**:2055-2071.
- Wolda, H., and D. W. Roubik. 1986. Nocturnal bee abundance and seasonal bee activity in a Panamanian forest. Ecology 67:426-433.
- Woods, T. M., J. L. Jonas, and C. J. Ferguson. 2012. The invasive *Lespedeza cuneata* attracts more insect pollinators than native congeners in tallgrass prairie with variable impacts. Biological Invasions **14**:1045-1059.
- Xia, J., S. G. Sun, and Y. H. Guo. 2007. Honeybees enhance reproduction without affecting the outcrossing rate in endemic *Pedicularis densispica* (Orobanchaceae). Plant Biology **9**:713-719.

- Yamamoto, M., C. I. da Silva, S. C. Augusto, A. A. A. Barbosa, and P. E. Oliveira. 2012. The role of bee diversity in pollination and fruit set of yellow passion fruit (*Passiflora edulis* forma *flavicarpa*, Passifloraceae) crop in Central Brazil. Apidologie **43**:515-526.
- Young, H. J., D. W. Dunning, and K. W. von Hasseln. 2007. Foraging behavior affects pollen removal and deposition in *Impatiens capensis* (Balsaminaceae). American Journal of Botany **94**:1267-1271.
- Zhang, H., J. Huang, P. H. Williams, B. E. Vaissière, Z. Zhou, Q. Gai, J. Dong, and J. An. 2015. Managed bumblebees outperform honeybees in increasing peach fruit set in China: different limiting processes with different pollinators. PLoS One **10**:e0121143.