

Tolerance to crowding

Prevailing wisdom: minimize drift to minimize drift fighting

Use same tricks used for honey bees:

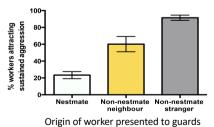
- Different colours/patterns
- · Different orientations
- Different heights

Tolerance to crowding

T. carbonaria hives (photo credit?)

High drift between neighbours

When crowded, up to 40% of all foragers exiting hives originated in other colonies (similar % to other managed social bees).



Stephens et al. 2017, Biol J Linn Soc.

High drift between neighbours

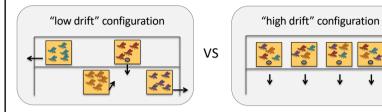
Guards tolerate foreign workers from nearby, but not faraway, colonies

Add chilled bee and see what happens

Stephens et al. 2017, Biol J Linn Soc.

Crowded bees make recognition errors (good news for beekeepers)

So, maximize drift to minimize drift fighting?



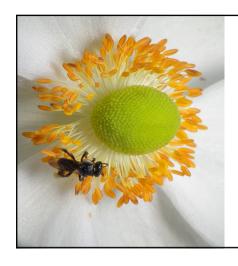
Field tests of crowding tolerance

- Phase 1: Compare health/growth after 6 months.
- Phase 2: Compare incidence of drift-fighting after relocation.

Bueno, Heard et al., unpublished data

What about minimizing true fights?

- Possibly mitigate by dividing colonies before they get too strong (but attackers are wild colonies?)
- Crowded colonies may be less likely to attempt usurpations of each other



Tolerance to honey bee neighbours?

 T. carbonaria will defend nest from honey bees if needed, but not by deploying airforce

Acknowledgements

Ruby Stephens Tim Heard Madeleine Beekman Francisco Bulle Bueno Benjamin Oldroyd Dean Haley Bob Lutterall John Klumpp Matt Keir

